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ABSTRACT

Precision farming involves crop management in parcels smaller than field size.
Yield prediction models based on early growth stage parameters are one desired goal to
enable precision farming approaches to improve production.  To accomplish this goal,
spatial data at a suitable scale describing the variability of yield, crop condition at certain
growth stages, soil nutrient status, agronomic factors, moisture status, and weed/pest
pressures are required.

This paper discusses the potential application of aerial imaging to monitor and
predict the potential yield for corn and soybean at various growth stages in the season.
Included in the analyses were aerial images, yield monitor data and soil grid sampling. The
relationship between remotely sensed Normalized Difference Vegetation Index (NDVI)
and yield was best at 9 m spatial resolution.  Preliminary results indicate that it is possible
to use NDVI to estimate the potential yield for soybean and corn when canopy reaches full
cover.

INTRODUCTION

Precision farming is a new agricultural system concept with the goals of optimizing
returns in agricultural production and environment.  This concept involves the
development and adoption of remote sensing (Barnes et al., 1996), and Geographic
Information System (GIS) technology applications, and knowledge-based technical
management systems (NRC, 1997).  With a refined GIS and spatial knowledge-based
management system, farmers should have the ability to appropriately manage field
operations at each location in the field, as well as the ability to predict likely yield from
early season indicators.

Many studies have focused on variable rate applications (Gotway et al, 1996;
Stafford and Miller, 1996) while some are focused on yield mapping (Sudduth and
Drummond, 1996).  Yield mapping provides not only information about the yield itself,
but it allows comparison to field conditions that may explain spatial yield variation.
However, yield mapping is normally accomplished only once, at the end of a season.  It is
difficult to quantitatively evaluate efficacy of management because many factors that



comprise the measured value change over successive seasons (Blackmore and Marshall,
1996; Davis, 1998).  Over the longer term, the combined technologies of variable rate
applications and yield mapping allows analyses of individual variables and their correlation
to crop production between seasons.  Remote sensing from airborne or spaceborne
sensors can provide spatially distributed synoptic data acquired multiple times during the
growing season.  The normalized ratio of near-infrared reflectance to red reflectance,
called the normalized difference vegetation index (NDVI) has been shown to be a sensitive
indicator of biomass and leaf area in several crops, which can be used to track crop
development over the season.  Because crop yield is generally correlated with canopy
development, this index can be used to develop a relationship to yield. Once a relationship
between yield and NDVI is developed, then farmers can predict their yield earlier in the
growing season and therefore, better harvest management, planing the following season’s
inputs, and other more effective management can be achieved.

To explore the potential for corn and soybean yield prediction, the study objectives
were: (1) to monitor Midwest row crop growth during the growing season through aerial
images, (2) to understand the relationship between crop yield and NDVI, (3) to investigate
the optimum image spatial scale for the best performance in yield prediction, and (4) to
examine the relationships between NDVI and soil nutrients.

MATERIALS AND METHODS

Corn and soybean fields near Hills, Iowa (Figure 1) were selected for study.  Hills
is situated in a small valley located south of Iowa City.  Most agriculture in the region is
rainfed and the growing season normally starts early in May with harvesting in late
September or October.  Soils are generally rich in organic matter.  The selected corn field,
planted April 24, 1997, was approximately 46 acres in size. The selected soybean field,
planted May 10 1997, was approximately 110 acres in size.  There were no specific pest
pressures influencing crop growth in either field.

Aerial images of both fields were obtained three times (6/17, 7/16, 9/18 in 1997)
during the growing season using the ADAR 5500 4-band digital camera.   The 4-spectral
band intervals were filtered to match Landsat Thematic Mapper blue, green, red, and near-
infrared bands.  The airplane was flown at an altitude of approximately 7300 feet to
provide ground spatial resolution of 1 m.  Yield monitor data, recorded as a flow rate, and
harvest speed were measured at two second intervals.  Soil was sampled at 100m by 100m
grid, and the major nutrients of N,P,K and minor nutrients of Ca++, Mg++  were analyzed.

The images, yield and soil data were georeferenced into a common coordinate,
UTM zone 15 with no shift parameters.  The NDVI was derived by ratio (NIR-R/NIR+R)
from the aerial images for the selected fields.  Various scales were resampled from the
original 1 m resolution image and two second flow yield monitor point data in a raster
environment.  These scales included 1m, 3m, 6m, 9m, and 12m.

ENVI image processing software (RSI Inc.), Arc/Info GRID and ArcView GIS
software (ESRI, 1997) and SAS statistical software (SAS, 1996) were used for the data
analysis.  MS Excel was used for the graphs.



Figure 1.  Study location in Hills, Iowa.

RESULTS AND DISCUSSION

The NDVI maps and the false color composite images, which are comprised of
green, red and near-infrared bands, clearly displayed anomalies in the corn and soybean
fields at the 1 meter spatial resolution.  From the cropping history, these field patterns are
associated with the agronomic variables which are used to assist farmers in field scouting
and farm management decisions.  The analysis results indicated a strong correlation
between corn and soybean yields and NDVI in both June and July images.  Figure 2
displayed the similar spatial patterns in yield and NDVI for both corn and soybean crops.

a. b.

Figure 2. a. Soybean yield map and July
NDVI map for the field.

Figure 2. b. Corn yield map and July NVDI
map for the field.

Our analysis showed that more than 70% of yield variation can be explained by aerial
imaged NDVI for both corn and soybean crops when the NDVI values were grouped into
fine intervals.  The relationships for NDVI yield estimates from both June and July images



were significant; however, the estimates from the July images were better yield predictors.
These results may be attributed to the facts that the crops had reached full cover in July,
the vegetation spectral signals were maximized, and the soil exposures were minimized in
the images.

Comparisons of NDVI yield estimates from various spatial scales indicated that 9
to 12 m spatial resolution produced the highest R2, which provided the best fit in both
corn and soybean (Figure 3).  The optimum scale may be associated with the planting
variables and the machinery used in the field yield mapping as well as the quality of data
collection.  This scale also allows capturing the soil anomaly variation present in these
fields.  Corn and soybean were planted in approximately 30-inch row spaces.  Most corn
and soybean machinery cover more than 1 meter in width, therefore it is difficult to
precisely match field measurements to 1 m resolution imagery.  In fact, the yield harvester
was at least 6 meters in width.
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Figure 3.  Slope and interception versus the scale changes in input data.

The quality of the yield monitor data depends on the variation of the topography
and how uniformly the harvester is driven since the yield data were recorded every two
seconds as a flow rate.  As Blackmore and Marshall (1996) pointed out, there were seven
potential error sources associated with yield data collection.  These sources included
unknown crop width in the header during the harvest, time lag of grain through the
threshold machine, wandering error from GPS readings, surging grain through the
combine transport system, grain loss from the combine, sensor accuracy, and calibrations.
Therefore, it makes sense that data around 9 to 12 m spatial resolution would reveal the
more robust results since the variations of yield recording can be averaged, and the
random and systematic variations of both NDVI and yield can be reduced.

The results also showed that there was an increase in R2 for yield estimates with
the increased resampling from 1 m up to 9 m on NDVI while yield data stayed at 1 m.
The magnitude of increased R2 was larger for yield estimates when the yield data were re-
sampled from 1 m up to 9 m while NDVI stayed at 1 m.  The results indicated the



sensitivity of scaling yield data to a proper scale in order to find the meaningful yield
estimates using NDVI.

The residue map of the corn field using 9 m data inputs (Figure 4) was based on
the differences between the predicted yield map and actual yield map.  The various ranges
identified in the residue map show the spatial locations of the unmatched predictions.  The
histogram (Figure 5) indicated that 70% of correct yield estimates were within +/- 5 bu/ac;
90% of correct yield estimates were within +/- 9 bu/ac.

Figure 4.  Spatial distribution of the residue map for the corn field.  The lighter colors
represent well-matched yield predictions and the darker colors are the unmatched yield
predictions.
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Figure 5.  Residue histogram.  For most pixels, the difference between the
predicted yield and the actual recorded yield was within 5 bu/ac.

There is a general hypothesis that yield is a function of soil nutrient variables in
addition to environmental factors.  Therefore, a relationship between yield and soil
nutrients was expected.  However, with the given data, we found no direct spatial
relationship between yield and soil nutrients, and no direct relationship between NDVI and
soil nutrients.  This result may be due to the soil data quality and the inconsistent spatial



scales of the yield, aerial images and soil nutrients.  Hence, future analysis should include
higher resolution of soil data, better accounting for the environmental factors, and middle
season pest pressures.

Since field conditions and nutrients vary from field to field, one linear regression
developed from one condition is not adequate to predict the yield for other fields.
However, developing this type of relationship in multiple fields could provide farmers with
information for site-specific management.

Understanding the field agronomic features is important in performing precision
farming, and data quality is often another key to help us correctly understand spatial
variation in agricultural landscape structures and temporal variations at a given field
(Franzen et al, 1996).  It is common knowledge that spatial data for precision farming is
collected from various sources and in different formats.  Yield data are often downloaded
from yield monitors, soils from grid sampling, images from various aerial vendors and/or
satellites, and agronomic features from farmer’s growing history.  To continue to improve
our understanding of these relationships, it is critical to develop more precise location
information for samples and to consider new strategies to optimize soil sampling
procedures.  For future work, multiple fields should be studied and better image
calibration using a common base should be developed to achieve the yield predictability.

CONCLUSIONS

From the analyses, we found that aerial images provide farmers with the
knowledge needed to  monitor crop growth, identify some of field anomalies, and
efficiently direct the field scouting person to the anomalies.  This knowledge is very
important for short growing season crops such as vegetables and other high value cash
crops in order to perform on time field management for the crops.  However, it may not
be as important for corn and soybean row crops.  We also concluded that the better image
yield prediction was found when crop reached full cover for corn and soybean crops, and
the best yield estimates were obtained with 9 m resampled yield monitor data and NDVI
data.  The scaling effects of yield monitor data was more sensitive than the scaling effects
of resampled NDVI images.  Our preliminary results showed that NDVI can serve as an
early indicator for corn and soybean yield estimates in Iowa.

In order to best use the data and the results, we need to have a better
understanding of the impact of combining multiple errors into assessments.  Though the
data quality and potential error sources for each of the variables may potentially impede
understanding of agricultural process and limit the rate at which technology applications
are adopted in precision agriculture, the results from this study demonstrated yield
prediction up to three months before harvest, and addressed the choice of sampling scales
for data collection.  Nonetheless,  more work is needed to determine the optimum strategy
for correlating yield maps with NVDI to determine and verify apparent relationships.  The
image calibration and analysis methods need further research to improve the reliability of
interpretations for technology applications in precision farming.
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