Co-Occurrence Pesticide Species Tool (CoPST)

Debra Denton (EPA R9), Rich Breuer (SWRCB), Gerco Hoogeweg and Marty Williams (Waterborne Inc.)
Original Objective

- Identify the potential spatial and temporal co-occurrence of 40 pesticides with 12 threatened and endangered species
 - to guide future risk assessments (co-occurrence analysis piece)
 - Cited in the National Academy of Sciences on addressing pesticides to T&E species in the exposure section
 - Chapter in ACS on Pesticide Regulation and the Endangered Species Act
Current Analysis Objective

• To better understand the spatial and temporal distribution of 40 pesticides and their potential to cause toxicity (No co-occurrence species model runs)
• Enable state and federal agencies to identify and prioritize areas for refined assessments, monitoring, or mitigation.
• $M^5 = \text{monitoring, modeling, management, movement, and money}$
Original Model development Funded by CA Bay-Delta Science Program (CALFED)

Project Team

US EPA Region 9

Cramer Fish Sciences

Technical Advisory Panel

US EPA Region 9
CDPR
CVRWQCB
NOAA-NMFS
SWRCB
TDC Environmental
USDA–ARS
USDA-NRCS
USGS
Study Area

Sacramento River
27,000 sq mi (69,930 km²)

Bay-Delta Estuary
4,500 sq mi (11,691 km²)

San Joaquin River
32,000 sq mi (83,000 km²)
Pesticide List

- (s)-Metolachlor Herbicide
- Abamectin Insecticide
- Bifenthrin Insecticide
- Bromacil Herbicide
- Captan Fungicide
- Carbaryl Insecticide
- Chlomazone Herbicide
- Chlorothalonil Fungicide
- Chlorpyrifos Insecticide
- Copper Sulphate Fungicide
- Copper Hydroxide Fungicide
- Cyfluthrin Insecticide
- Cyhalofop-butyl Herbicide
- Cypermethrin Insecticide
- Deltamethrin Insecticide
- Diazinon Insecticide
- Dimethoate Insecticide
- Diuron Herbicide
- Esfenvalerate Insecticide
- Hexazinone Herbicide
- Imidacloprid Insecticide
- Indoxacarb Insecticide
- Lamda cyhalothrin Insecticide
- Malathion Insecticide
- Mancozeb Fungicide
- Maneb Fungicide
- Methomyl Insecticide
- Naled Insecticide
- Oxyflurofen Herbicide
- Paraquat dichloride Herbicide
- Pendimethalin Herbicide
- Permethrin Insecticide
- Propanil Herbicide
- Propargite Insecticide
- Pyraclostrobin Fungicide
- Simazine Herbicide
- Trifluralin Herbicide
- Ziram Fungicide
- Thiobencarb Herbicide
- Tralomethrin Insecticide
Model Approach

Pesticide Loadings (2000-2009)
1. Runoff from fields
2. Drift from spray
3. Discharges from rice paddies
4. Runoff from urban settings

Species of Interest
1. Eco-toxicological benchmarks
2. Life history assessment
3. Species distribution

Watershed Characteristics
1. Landscape patterns
2. Soils
3. Climate Conditions

Water Quality Monitoring

Spatial-Temporal Co-occurrence

Reporting
1. Species Distributions
2. Pesticide Loadings
3. Hotspots
4. Areas of Concern
5. Recommendations

Visualizations
Goal of Modeling

• Estimate potential pesticide edge-of-field loadings into nearby water bodies considering important factors in chemical fate and transport:
 – Agricultural modeling
 • Pesticide Root Zone Model (PRZM)
 • Edge-of-field mass
 – Rice modeling
 • Rice water quality model (RICEWQ)
 • Water management /release
 – Urban modeling (4 pyrethroids)
 • Pervious and impervious areas with PRZM
 • Pyrethroid “Kd “calibrated to hard surface washoff studies
 – Drift estimates
 • Application location, date, rate, method
 • Pesticide mobility / persistence
 • Site conditions – crop (land use), irrigation, soil properties, weather
Results Processing

- Pesticide mass loading
- PLSS water volume
- Spatial & temporal co-occurrence

Compare concentrations with benchmarks

- Benchmark
- No concern

Are there monitoring stations present downstream?

- Monitoring
- No concern

Determine co-occurrence

- Need further study
Uncertainty

- PUR precision / accuracy
- Pesticide properties
- Field-specific characteristics
- Hydrology / hydraulics
- Dissipation processes not represented
- Standardized assumptions

Edge of field predictions do **not** indicate adverse effects
Indicator Days

Distribution of Indicator Days for randomly selected PLSS Sections

Each line represents a unique PLSS

Function of which pesticide, when applied, method of application, soil properties, irrigation practices, rainfall patterns, etc.
Initial Finding: Certain Pesticides Need to be Monitored

- Abamectin
- Copper
- Mancozeb
- Maneb
- Pyraclostrobin
- Tralomethrin
Total Ag Heat
Total Ag Heat
<table>
<thead>
<tr>
<th>Sample Date</th>
<th>Sample Time</th>
<th>Matrix Name</th>
<th>Analyte Name</th>
<th>Result</th>
<th>Units</th>
<th>Qual. Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/10/2004</td>
<td>1:00:00 PM</td>
<td>Sample Water</td>
<td>Pernothrin</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>8/10/2004</td>
<td>1:40:00 AM</td>
<td>Sample Water</td>
<td>Chlorpyrifos</td>
<td>0.04</td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>8/10/2004</td>
<td>1:00:00 PM</td>
<td>Sample Water</td>
<td>Endosulfan I</td>
<td>0.04</td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>7/26/2004</td>
<td>2:00:00 PM</td>
<td>Sample Water</td>
<td>Cypemethrin</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>8/24/2004</td>
<td>11:20:00 AM</td>
<td>Sample Water</td>
<td>Endosulfan I</td>
<td>0.04</td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>8/10/2004</td>
<td>1:00:00 PM</td>
<td>Sample Water</td>
<td>Cypemethrin</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>8/10/2004</td>
<td>1:40:00 AM</td>
<td>Sample Water</td>
<td>Carbaryl</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>8/10/2004</td>
<td>1:20:00 AM</td>
<td>Sample Water</td>
<td>Malathion</td>
<td>0.04</td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>7/13/2004</td>
<td>11:20:00 AM</td>
<td>Sample Water</td>
<td>Chlorpyrifos</td>
<td>0.042</td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>9/4/2004</td>
<td>11:40:00 AM</td>
<td>Sample Water</td>
<td>Methoxyfenozide</td>
<td>0.04</td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>9/4/2004</td>
<td>11:40:00 AM</td>
<td>Sample Water</td>
<td>Captain</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>9/4/2004</td>
<td>11:40:00 AM</td>
<td>Sample Water</td>
<td>Diazinon</td>
<td>0.005</td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>9/7/2004</td>
<td>11:40:00 AM</td>
<td>Sample Water</td>
<td>Thiobencarb</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>8/24/2004</td>
<td>11:20:00 AM</td>
<td>Sample Water</td>
<td>Permethrin</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>7/13/2004</td>
<td>11:20:00 AM</td>
<td>Sample Water</td>
<td>Carbaryl</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>9/7/2004</td>
<td>11:40:00 AM</td>
<td>Sample Water</td>
<td>Endosulfan I</td>
<td>0.04</td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>7/27/2004</td>
<td>2:00:00 PM</td>
<td>Sample Water</td>
<td>Dimethoate</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>8/24/2004</td>
<td>11:20:00 AM</td>
<td>Sample Water</td>
<td>Cypemethrin</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>8/7/2004</td>
<td>11:40:00 AM</td>
<td>Sample Water</td>
<td>Fluvalinate</td>
<td>0.035</td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>7/15/2004</td>
<td>11:20:00 AM</td>
<td>Sample Water</td>
<td>Diazinon</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>7/27/2004</td>
<td>2:00:00 PM</td>
<td>Sample Water</td>
<td>Bifenthrin</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>7/13/2004</td>
<td>11:20:00 AM</td>
<td>Sample Water</td>
<td>Lambda cyantranilipyr</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>7/27/2004</td>
<td>2:00:00 PM</td>
<td>Sample Water</td>
<td>Dicofol</td>
<td>0.04</td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>8/24/2004</td>
<td>11:20:00 AM</td>
<td>Sample Water</td>
<td>Captain</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>7/13/2004</td>
<td>11:20:00 AM</td>
<td>Sample Water</td>
<td>Cyflubrate</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>9/7/2004</td>
<td>11:40:00 AM</td>
<td>Sample Water</td>
<td>Carbaryl</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>7/27/2004</td>
<td>2:00:00 PM</td>
<td>Sample Water</td>
<td>Carbaryl</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>7/13/2004</td>
<td>11:20:00 AM</td>
<td>Sample Water</td>
<td>Malathion</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>8/24/2004</td>
<td>11:20:00 AM</td>
<td>Sample Water</td>
<td>Simazine</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>8/10/2004</td>
<td>1:00:00 PM</td>
<td>Sample Water</td>
<td>Dimethoate</td>
<td>0.04</td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td>8/24/2004</td>
<td>11:20:00 AM</td>
<td>Sample Water</td>
<td>Dimethoate</td>
<td></td>
<td>ug/L</td>
<td>ND</td>
</tr>
</tbody>
</table>
Reasons why Monitoring and the Model May not Match

- Monitoring data for May not in historical record
- Parameters monitored may not match the 40 pesticides modeled (i.e. fungicides)
- Analytical method resolution may not be at the environmentally relevant concentration
- Model may over predict potential toxicity
- Edge-of-field pesticide concentration may be present but may not get to receiving water
 - BMP’s in place
 - Natural barriers
 - Chemical or physical degradation occurring
July Modeling Data

July Model Results Match Monitoring for:
Chlorpyrofos
Diazinon
Malathion
Esfenvalerate

CoPST Results
- Study Area
- Water Monitoring Sta
- Partial Barriers
- Total Barriers
- ESRI Detailed Rivers
 - Stream/River
 - Canal/Ditch
- January
- February
- March
- April
- May
- June
- July
- August
- September
- October

Pesticide Heat
- Total Heat Units: 804
- Month: July
- Heats by Chemical
 - Alachlor: 8
 - Bifenthrin: 0
 - Bromocarb: 0
 - Cypermethrin: 0
 -Cyproconazole: 0
 - Cypermethrin Bayer: 0
 - Cypermethrin: 0
 - Deltamethrin: 0
 - Diazinon: 73
 - Dithianon: 0
 - Diuron: 0
 - Esfenvalerate: 101
 - Hexazinone: 0
 - Imidacloprid: 0
 - Indoxacarb: 0
 - Lambda-Cyhalothrin: 9
 - Malathion: 7
 - Mancozeb: 0
 - Methomyl: 0
 - Metolachlor: 0

Change Background Map

Zoom to
Can change background map to satellite imagery for more detail
Uses of the Tool (Model plus Map layers)

- Identify temporarily and spatially, priority sections, areas and watersheds for further investigation
- Examine current water quality monitoring sites, frequency, and parameters for relevancy
- Identify areas as priority for BMP development and funding
- Aid in developing plans to improve ecosystem quality and water quality
What's Next?

• Outreach to NRCS and Waterboards
• Building up
 – Adding more pesticides as they emerge as a concern
 – Updating PUR data, and model runs
• Building out
 – Other geographic areas (Central Coast water board)
Contact Information

Rich Breuer, OIMA, Assistant Director at 916-341-5220
rich.breuer@waterboards.ca.gov
Debra Denton, USEPA Region 9 at 916-341-5520
denton.debra@epa.gov

Gerco Hoogeweg, Waterborne Environmental Inc.
hoogewegg@waterborne-env.com
Marty Williams, Waterborne Environmental Inc.
williamsm@waterborne-env.com

To download report and see overview of project:
http://www.waterborne-env.com/projects_featured.asp