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g r a p h i c a l a b s t r a c t
� A novel machine learning model for
predicting daily PM2.5 concentrations
in China.

� This model shows superior predictive
performance and is able to handle
missing data.

� >90% of the population lived in areas
with annual mean PM2.5 > 35 mg/m3

� >40% of the population was exposed
to PM2.5 >75 mg/m3 for over 100 days
in a year.
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a b s t r a c t

A high degree of uncertainty associated with the emission inventory for China tends to degrade the
performance of chemical transport models in predicting PM2.5 concentrations especially on a daily basis.
In this study a novel machine learning algorithm, Geographically-Weighted Gradient Boosting Machine
(GW-GBM), was developed by improving GBM through building spatial smoothing kernels to weigh the
loss function. This modification addressed the spatial nonstationarity of the relationships between PM2.5

concentrations and predictor variables such as aerosol optical depth (AOD) and meteorological condi-
tions. GW-GBM also overcame the estimation bias of PM2.5 concentrations due to missing AOD retrievals,
and thus potentially improved subsequent exposure analyses. GW-GBM showed good performance in
predicting daily PM2.5 concentrations (R2 ¼ 0.76, RMSE ¼ 23.0 mg/m3) even with partially missing AOD
data, which was better than the original GBM model (R2 ¼ 0.71, RMSE ¼ 25.3 mg/m3). On the basis of the
continuous spatiotemporal prediction of PM2.5 concentrations, it was predicted that 95% of the popu-
lation lived in areas where the estimated annual mean PM2.5 concentration was higher than 35 mg/m3,
and 45% of the population was exposed to PM2.5 >75 mg/m3 for over 100 days in 2014. GW-GBM
accurately predicted continuous daily PM2.5 concentrations in China for assessing acute human health
effects.

© 2017 Elsevier Ltd. All rights reserved.
g@ucdavis.edu (M. Zhang).
1. Introduction

Exposure to fine particulate matter with diameter <2.5 mm
(PM2.5) has been associated with increased cardiovascular
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morbidity and respiratory mortality (Dockery et al., 1993; Keller
et al., 2015; Madaniyazi et al., 2015; Pope et al., 2011; Puett et al.,
2009), as well as decreased birth weight (Rich et al., 2015).
Annual average daily PM2.5 exposure levels have been used to
develop exposure-response functions (Burnett et al., 2014), and to
assess the Global Burden of Disease or mortality attributable to
ambient PM2.5 (Apte et al., 2015; Brauer et al., 2012). In addition,
reliable daily PM2.5 exposure levels are needed to assess acute
health effects (Shang et al., 2013), such as acute lower respiratory
infection for children. China is one of the countries with the most
severe air pollution by PM2.5 (Brauer et al., 2016; Lai et al., 2013).
Severe PM2.5 pollution has attracted public attention, and the
Chinese government has been implementing regulations which
aim to achieve a 15e25% decrease of PM2.5 concentrations from
2012 to 2017 for highly polluted areas (SCPRC, 2013). While the air
quality monitoring network has covered most major cities in China
(MEPC, 2015), nationwide spatiotemporal distributions of PM2.5
concentrations should be delineated for human exposure assess-
ment and policy making.

Various models have been developed for predicting the
spatiotemporal distributions of PM2.5 concentrations, including
chemical transport models (CTMs) and statistical models.

On the basis of meteorological fields generated by climate
models, CTMs simulate main processes of chemicals in the atmo-
sphere, including emissions, chemistry, transport, and deposition
(Jacob, 1999). For instance, the Goddard Earth Observing System-
chemical transport (GEOS-Chem) model (Bey et al., 2001), is able
to predict compositions and concentrations of PM2.5 based on the
corresponding emission inventories and environmental conditions
(Geng et al., 2015; van Donkelaar et al., 2016). This model is espe-
cially valuable for regions without PM2.5 monitoring data, where
statistical models are generally inapplicable. This model showed
good predictive performance when assimilated with satellite-
retrieved aerosol optical depth (AOD), and even better perfor-
mance when ground-based PM2.5 observations were also incorpo-
rated (van Donkelaar et al., 2016). Nevertheless, CTM's performance
could be undermined by high uncertainty in the emission in-
ventories presented on a fine spatiotemporal resolution (e.g.,
1� � 1� grids and daily). This is especially true for China, where the
amount of annual coal consumption has been corrected up to 12%
higher than previously reported (NBSC, 2013; 2015).

Given the established monitoring network in China, sophisti-
cated statistical models that do not rely on the emission inventories
tend to be more suitable for predicting spatiotemporal distribu-
tions of PM2.5 concentrations in China on a fine spatiotemporal
resolution. A number of statistical models, such as the geographi-
cally weighted regression (GWR) model (Ma et al., 2014), the
mixed-effect models (Ma et al., 2016a; Xie et al., 2015), and the
Bayesian hierarchical model (Lv et al., 2016), have been adopted to
predict the PM2.5 concentrations in China. These statistical models
predict spatiotemporal distributions of PM2.5 based on the ground-
based PM2.5 observations, AOD satellite retrievals, meteorological
conditions, and/or land use types. In dealing with missing data,
these statistical models generally employ interpolation to fill
missing AOD retrievals or simply exclude the data points (i.e., data
records) with missing values (Kloog et al., 2011; Lv et al., 2016; Ma
et al., 2016a). The exclusion however tends to result in biased es-
timates of PM2.5 concentrations (Geng et al., 2015; van Donkelaar
et al., 2010). These biased estimates tend to degrade the associ-
ated epidemiological analysis, such as the Global Burden of Disease
(Naghavi et al., 2015). Although complete sets of AOD retrievals can
be developed by fusing the data from different satellites or through
interpolation (Nguyen et al., 2012; Xu et al., 2015), the change-of-
support problem (i.e., inconsistent spatial units) or the propaga-
tion of uncertainty in interpolation are likely to emerge. In addition,
these statistical models that belong to the data modeling culture
assume that the observations are generated by specified stochastic
models (Breiman, 2001). Nevertheless, the specified models are
likely to oversimplify the otherwise complex relationships between
PM2.5 concentrations and the predictor variables (Reid et al., 2015),
such as by ignoring effects of interaction between predictor vari-
ables on PM2.5 or nonlinear relationships between predictor vari-
ables and PM2.5.

Machine learning algorithms or models, which pertain to the
algorithmic modeling culture, learn model structures from training
data and generally show better predictive performance than con-
ventional statistical models (Breiman, 2001; Hastie et al., 2009). For
instance, a neural network model with a good performance was
developed to predict the daily PM2.5 concentrations in the conti-
nental United States (Di et al., 2016). A gradient boosting machine
(GBM) model outperformed ten other statistical models in pre-
dicting the PM2.5 concentrations in California after a major fire
event (Reid et al., 2015). A GBM model, with the strengths of clas-
sification/regression trees and boosting, grows an ensemble of
weak decision trees in a forward and stage-wise fashion (Friedman,
2001, 2002). By learning from training data, GBMmodels are able to
capture interaction and nonlinearity in dependence structures, as
well as to handle missing data in a data point, such as missing AOD
retrieval. However, a “global”model is unable to address the spatial
nonstationarity in the relationship between PM2.5 concentrations
and predictor variables. Moreover, trend-fitting methods such as
spline interpolation or Kriging are inadequate to capture complex
spatial variation (Brunsdon et al., 1996). Thus, the model structure
should alter geographically to reflect the spatial nonstationarity.

This study aims to develop a spatially explicit GBM model,
named Geographically Weighted (GW) GBM, for predicting the
continuous daily PM2.5 concentrations across China. Spatial
smoothing kernels were adopted to model the spatial non-
stationarity in the relationship between PM2.5 concentrations and
predictor variables. The GW-GBM model was used to predict the
daily PM2.5 concentrations for 2014 in China (0.5� � 0.5� grids were
used due to the high computational expense of the GW-GBM
model) based on the ground-based PM2.5 observations, AOD data
from the Aqua-retrieved Collection 6 of Moderate-resolution Im-
aging Spectroradiometer (MODIS) aerosol products (Levy et al.,
2013), and meteorological conditions. The predictive performance
of the GW-GBMmodel was evaluated by using cross-validation. We
then evaluated the estimation bias of PM2.5 concentrations due to
missing AOD retrievals, as well as the interaction, nonlinearity, and
spatial nonstationarity of the dependence structure of PM2.5 on the
predictor variables. The GW-GBM model with good predictive
performance and capable of dealing with missing data is expected
to advance the PM2.5 modeling.

2. Materials and methods

2.1. Data preparation

The GW-GBM model was used to predict the daily PM2.5 con-
centrations in 2014 at 0.5� � 0.5� spatial resolution for China (4 194
grid cells) based on the ground-based PM2.5 monitoring data
(Fig. S1), day of year (DOY), AOD, and meteorological conditions.
The PM2.5 monitoring data were retrieved from the National Air
Quality Monitoring Network for mainland China and Hainan Island
(MEPC, 2015), the Environmental Protection Department of Hong
Kong (http://www.epd.gov.hk) for Hong Kong, and the Environ-
mental Protection Administration of Taiwan (http://taqm.epa.gov.
tw) for Taiwan. The PM2.5 concentrations were measured with
either the tapered element oscillating microbalance technology or
the beta-attenuation method (Zhao et al., 2016). The monitoring
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sites with less than half-year data were excluded from this analysis.
The PM2.5 monitoring data for 1 015 sites from 267 cities were
obtained, which were assigned to their enclosing grid cells. Aver-
ages were taken for the cells containing multiple monitoring sites,
resulting in 285 grid cells with PM2.5 monitoring data.

The AOD data were obtained from the deep blue/dark target
merged product contained in the Aqua-retrieved Collection 6
MODIS aerosol products at level 2 (Levy et al., 2013). Although
1 � 1 km2 AOD products were available from the Multi-Angle
Implementation of Atmospheric Correction (MAIAC) algorithm
(Lyapustin et al., 2011), these AOD products were not completed for
China in 2014 at the time of this study. The AOD data were
resampled to the delineated grids by averaging. The overall per-
centage of missing AOD was 39.1% (Table S1). The daily meteoro-
logical conditions, including air temperature, atmospheric
pressure, evaporation, precipitation, relative humidity, sunshine
duration, and wind speed, for 839 meteorological stations were
downloaded from the China Meteorological Data Center (http://
data.cma.cn). The elevation data, with a resolution of 90 m at the
equator, were obtained from the Shuttle Radar Topography Mission
(SRTM) database (Jarvis et al., 2008). These site-specific meteoro-
logical data were interpolated to the delineated grids using co-
Kriging with normal score transformation (Deutsch and Journel,
1998), where elevation data were incorporated into the estimator.
The gridded population density data, with a resolution of 1 km,
were obtained from the Data Center for Resources and Environ-
mental Sciences for calculating population-weighted PM2.5 con-
centrations (RESDC, 2014), which were resampled to the delineated
grids by averaging. Note that all data were summarized in the
delineated grids used for model development, evaluation, and
prediction.

2.2. Model description

The GW-GBM model was developed as an ensemble of GBM
models, where a single GBM model, hereafter referred to as a sub-
model, was used for each predicting cell at 0.5� � 0.5� resolution.
Each GW-GBM sub-model was trained to optimize a weighted
squared error loss function for the associated training cells
(Ridgeway, 2015):

Lðy; f ðxÞÞ ¼
XM
m¼1

XNm

n¼1

wm½ymn � f ðxmnÞ�2
, XM

m¼1

ðwmNmÞ (1)

where L(y, f(x)) is the loss function for predicting observation y (i.e.,
PM2.5 concentrations) by model f(x); x represents predictor vari-
ables, including DOY, AOD, atmospheric pressure, air temperature,
evaporation, wind speed, relative humidity, sunshine duration, and
precipitation; m is a running index for the training cells (m ¼ 1 to
M; M is the total number of training cells, i.e., cells with PM2.5
monitoring data); n is a running index for the data points from cell
m (n ¼ 1 to Nm; Nm is the total number of data points from cell m);
xmn and ymn are values of predictor and response variables,
respectively, for data pointmn; andwm is the weight of training cell
m, which is determined by the spatial smoothing kernel based on
the distance between this training cell and the predicting cell. The
strategy for identifying training cells for a targeted predicting cell,
as well as the formulas for three commonly adopted spatial
smoothing kernels (i.e., Gaussian, bisquare, and tricube), are listed
in the Supplement S2.

The loss function (Eq. (1)) was optimized through the GBM
procedure (Friedman, 2001, 2002). Please see Supplement S1 for
more reader-friendly explanations of the following steps.
Initialization : f0ðxÞ ¼
XM
m¼1

XNm

n¼1

ðwmymnÞ
, XM

m¼1

ðwmNmÞ (2)

For k ¼ 1 to K:

Subsampling : fjgS1 ¼ sample
�

figNT
1 ; S

�
(3)

Updating residuals : ~yj ¼ yj � fk�1
�
xj
�

(4)

Growing a tree : fRlkgL1 ¼ tree
�n

~yj; xj
oS

1

�
(5)

Computing terminal node prediction : rlk

¼
X

xj2Rlk

�
wj~yj

�, X
xj2Rlk

wj (6)

Shrinking the new tree and adding it to the model:

fkðxÞ ¼ fk�1ðxÞ þ lrlkIðx2RlkÞ (7)

where at each step k, a subsample with S data points fjgS1 are drawn

from the training dataset figNT
1 at random without replacement

(NT ¼ PM
m¼1Nm); ~yj is the pseudo residual produced by the model

updated at the previous step annotated as fk-1(xj); Rlk represents the
region of the predictor feature space corresponding to terminal l of
the new tree with L terminals; rlk is the prediction for terminal l;wj

is the weight of the cell that contains data point j; and l is the
shrinkage rate (l ¼ 0.05). In growing a tree (step 5), it starts with a
single (root) node, and then searches over all binary splits of all
predictor variables for the one that reduces the weighted squared
error loss the most. The tree-split process iterates until the mini-
mum number of data points in a terminal node (default: 10) or the
maximum tree depth is reached. The tree depth (i.e., interaction
depth) is the length of the longest path from the root to the ter-
minal nodes, which reflects the interaction among the predictor
variables. For example, a tree depth of 1 implies an additive model,
and a depth of 2 implies 2-way interactions.

Note that K is determined with sample-based 10-fold cross-
validation, where the training samples are randomly partitioned
into 10 groups of approximately the same size (Elith et al., 2008).
Starting with a selected K’ (e.g., 50), the GW-GBM model trained
with 9 groups makes predictions for the remaining group, which is
repeated 10 times to obtain a complete set of predictions, and the
root-mean-square error (RMSE) is recorded. This process is
repeated with a larger K0 until the RMSE does not decrease for 5
steps. K is set to the optimal K’ and is used to train the formal GW-
GBM model.
2.3. Missing data handling

As a tree-based model, the GW-GBM model can handle missing
data for continuous predictor variables by using surrogate splits
(Breiman et al., 1984). In growing trees, primary splits were first
determined by using the subset of data with complete records for
each partially missing variable. Then, a list of surrogate predictor
variables and split points (namely surrogate splits) were formed,
which produce splits similar to the primary splits. When making
predictions based on the data points with missing records of a
given variable, the surrogate splits were chosen in the order of their

http://data.cma.cn
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similarity to the primary splits in case some surrogate splits are still
unavailable due to missing data.
2.4. Model prediction

The continuous daily PM2.5 concentrations for China in 2014
were predicted on the 0.5� � 0.5� grids using the GW-GBM model.
Seven regions of China were used for spatially summarizing model
predictions, including North, Northwest, Northeast, East, Central,
South, and Southwest China (Fig. S1). The annual and quarterly
averages of PM2.5 concentrations were summarized from the pre-
dicted daily concentrations. For human exposure assessment,
population-weighted PM2.5 concentrations were calculated on the
national and regional levels (van Donkelaar et al., 2015).

PPW ¼
XN
i¼1

ðPi � CiÞ
,XN

i¼1

Pi (8)

where PPW is the population-weighted PM2.5 concentration for a
region covering N grid cells; Pi is the population density of grid cell
i; and Ci is the PM2.5 concentration of grid cell i. The short- and
long-term PM2.5 exposure levels for the population in China were
evaluated.
Table 1
Predictive performance based on datasets excluding or including the data points
with missing AOD values in cross-validation.

Excluding missing AODa Including missing AODb

GW-GBM Original GBM GW-GBM Original GBM

RMSE (mg/m3) 24.3 25.5 23.0 25.3
R2 0.74 0.71 0.76 0.71
Slope 0.75 0.72 0.77 0.71

a Summary of the monitoring PM2.5: 62.9 ± 47.6 mg/m3 (m±s; n ¼ 37 626).
b Summary of the monitoring PM2.5: 58.2 ± 47.2 mg/m3 (m±s; n ¼ 103071).
2.5. Model evaluation

The GW-GBM model was evaluated with cell-based 10-fold
cross-validation, where the training cells were randomly parti-
tioned into 10 groups of approximately the same size. The subse-
quent steps for obtaining the predictions were similar to those of
sample-based 10-fold cross-validation mentioned in the “Model
Description” section, i.e., the GW-GBMmodel trainedwith 9 groups
made predictions for the remaining group, which was repeated 10
times to obtain a complete set of predictions. Note that in themodel
evaluation, the sample-based cross-validation to determine K was
conducted for each repeat of the cell-based cross-validation. To
show the improvement by integrating the geographically weighted
method, a regular GBM model (hereafter referred to as the original
GBM model) was also developed and evaluated with the same
training dataset. The predictive performances were measured with
the root-mean-square error (RMSE) and coefficient of determina-
tion (R2) in the cross-validation.

In order to test the effectiveness of surrogate splits for handling
partially missing data in the GW-GBM model, the quarterly and
annual averages of PM2.5 predictions for all simulation days were
compared with those excluding days with missing AOD data. The
differences were plotted in maps, and considered as potential
estimation bias if the missing AOD data could not be handled by a
model.

The spatial variation of the importance of predictor variables for
predicting PM2.5 concentrations was evaluated. Here the impor-
tance of a predictor variable was defined based on the number of
times the variable was used for tree splitting and the consequent
error reduction in each GW-GBM sub-model (Friedman, 2001). The
formulas for the variable importance measures are listed in the
Supplement S3. For each sub-model (or predicting cell), the
importance measures of all predictor variables were scaled so that
their sum was equal to 100 for more intuitive interpretation. The
overall importance measures of the GW-GBM model were calcu-
lated as the averages over all cells. The GW-GBM model was
implemented in R by mainly adapting from package gbm (R
Development Core Team, 2015; Ridgeway, 2015).
3. Results

3.1. Predictive performance

On the basis of the cross-validation results (Table 1), the GW-
GBM model showed good performance in predicting daily PM2.5
concentrations even when AOD data were partially missing
(R2 ¼ 0.76, RMSE¼ 23.0 mg/m3), which was better than the original
GBM model (R2 ¼ 0.71, RMSE ¼ 25.3 mg/m3). The R2 by region and
season ranged from 0.21 for the third quarter in Northwest China
(due to the relative small number of monitoring sites in that region;
Fig. S1) to 0.79 for the first quarter in East China (Table S2). The
performance of the GW-GBM model was generally not sensitive to
the spatial smoothing kernel types (Table S3), although the bis-
quare kernel showed slightly better performance than the tricube
and Gaussian kernels. Compared to the statistical measures based
on daily data, the GW-GBM model showed better performance for
PM2.5 predictions on monthly, quarterly, and annual levels, with R2

of 0.84, 0.85, and 0.84, respectively (Fig. 1).

3.2. Spatiotemporal distributions of PM2.5 concentrations

As annual population-weighted averages by region (refer to
Fig. S1 for the locations of these regions), the highest PM2.5 con-
centrations in 2014 were predicted in North China (77.5 mg/m3),
followed by Central China (71.5 mg/m3) (Table 2). These two regions
are highly populated with 39.2% of the total population of China.
South China consistently showed the lowest PM2.5 levels across the
year. Seasonally, the highest national average PM2.5 concentrations
were predicted in the first quarter (86.0 mg/m3), and the lowest in
the third quarter (40.1 mg/m3). In the Central and North China, the
average daily PM2.5 were predicted to be > 100 mg/m3 during the
first quarter. PM2.5 pollution was much alleviated in the third
quarter for most of China, except for the southeast region of North
China (including the national capital region of Beijing-Tianjin-
Hebei) and deserts in Northwest China (Fig. 2). The predicted
spatiotemporal distributions of PM2.5 concentrations were gener-
ally consistent with the previous studies for China in 2014 (You
et al., 2016a, 2016b), though those two studies did not report
population-weighted PM2.5 concentrations.

3.3. Exposure to ambient PM2.5

On the basis of the continuous spatiotemporal prediction of
PM2.5 concentrations, it was found that 95% of the Chinese popu-
lation in 2014 lived in areas where the estimated annual mean
PM2.5 concentrationwas >35 mg/m3, and 45% of the populationwas
exposed to PM2.5>75 mg/m3 for more than 100 days (Fig. 3). The
levels of 35 and 75 mg/m3 are based on World Health Organization
(WHO)’s annual and 24-h mean interim target 1 (IT1) air quality
guidelines, respectively (WHO, 2006). Spatially, South China had
the highest percent of population (26%) living in areas meeting the
annual IT1, while the lowest levels were in Northeast and Central



Fig. 1. Evaluation of the predictive performance of the GW-GBM model by using cross-validation at (A) daily, (B) monthly, (C) quarterly, and (D) annual levels.

Table 2
Quarterly and annual averages ± standard deviations of population weighted PM2.5 concentrations for each region and the whole nation of China in 2014 (mg/m3).

Regiona Q1b Q2 Q3 Q4 Annual

Central China 103.2 ± 42.9 62.7 ± 15.0 45.2 ± 10.8 75.4 ± 23.7 71.5 ± 33.5
East China 80.4 ± 39.3 59.9 ± 17.3 41.4 ± 11.8 61.9 ± 19.5 60.8 ± 27.8
North China 106.3 ± 46.2 62.4 ± 18.3 55.2 ± 14.0 86.5 ± 37.7 77.5 ± 37.6
Northeast China 75.0 ± 30.8 39.5 ± 12.9 35.9 ± 15.0 75.3 ± 37.3 56.4 ± 32.1
Northwest China 86.4 ± 27.9 52.4 ± 15.8 38.4 ± 7.0 62.5 ± 16.2 59.8 ± 25.2
South China 54.6 ± 24.6 31.1 ± 8.9 24.3 ± 6.5 48.1 ± 12.2 39.5 ± 19.1
Southwest China 83.4 ± 33.0 47.4 ± 9.9 33.2 ± 6.5 57.4 ± 17.2 55.2 ± 26.7
Nation 86.0 ± 29.0 52.2 ± 8.7 40.1 ± 6.7 68.1 ± 16.9 61.6 ± 24.5

a Regions are labelled on Fig. S1.
b Q1: JanuaryeMarch; Q2: AprileJune; Q3: JulyeSeptember; Q4: OctobereDecember.

Y. Zhan et al. / Atmospheric Environment 155 (2017) 129e139 133
China (both are 0%). In addition, 33% of the Chinese populationwas
exposed to annual mean PM2.5 >70 mg/m3 (twice of the annual IT1).
Moreover, Fig. 3B shows the two-way cumulative distributions of
PM2.5 exposure intensity and duration at the daily level. Not only
was the majority of the population exposed to PM2.5 exceeding the
daily IT1 for most days of the year, but many were also exposed to
even higher PM2.5 for at least a few days in a year. For instance, 55%
of the national population was exposed to PM2.5 >150 mg/m3 for
more than 10 days in 2014. Note that the personal exposure would
likely be more variable than the exposure predicted in this study
due to the use of grid-cell PM2.5 averages. The personal exposure
would be affected by the personal activity pattern, indoor-outdoor
air exchange rate, and spatial heterogeneity within each grid cell.
3.4. Estimation bias due to missing AOD retrievals

To evaluate the improvement of model performance with
missing data handling, two sets of annual and quarterly averages of
PM2.5 concentration were calculated by including and excluding
GW-GBM predictions for the data points with missing AOD data,
and their differences were compared. Without the missing data
handling implemented in GW-GBM, the average PM2.5 concentra-
tions would have been highly underestimated in Northeast China,
and overestimated in South, East, and Northwest China (Fig. 4). The
magnitudes of the differences in average PM2.5 predictions gener-
ally followed the spatiotemporal distributions of the missing rate of
AOD coverage (Fig. S2). Higher absolute values of the differences
were associated with lower AOD coverage rates. Without missing
data handling by GW-GBM model, reduced average PM2.5 concen-
trations (reduced by up to 50 mg/m3) would be reported in
Northeast China, especially during the first and fourth quarters
when the AOD coverage rates were lower than 20% for a large part
of that region. Similarly, the GW-GBM model avoided the potential
overestimation (up to >50 mg/m3) of PM2.5 concentrations due to
AOD data missing in the first and second quarters for South and
East China, and in the second quarter for Northwest China (Fig. 4).



Fig. 2. Spatial distributions of the predicted PM2.5 concentrations for China in (AeD) each quarter and (E) the whole year of 2014.

Fig. 3. (A) shows the percent of national or regional population of China in 2014 exposed to PM2.5 higher than annual mean levels. (B) presents the percent of nationwide population
of China in 2014 exposed to PM2.5 higher than daily mean levels for longer than specified days. The WHO air quality guideline (AQG) and interim targets (IT) 1e3 for annual mean (in
panal A) and 24-h mean (in panel B) are indicated.

Y. Zhan et al. / Atmospheric Environment 155 (2017) 129e139134
The AOD coverage rates for the overestimated areas within these
three regions were generally lower than 30% in the first and second
quarters. For other areas with higher AOD coverage (30e90%), the
quarterly and annual estimation differences due to missing AOD
retrievals were much lower, generally within ±10 mg/m3.
3.5. Variable importance

The three most important predictor variables in the GW-GBM
model were day of year (DOY), aerosol optical depth, and atmo-
spheric pressure, with relative importance of 25.7, 13.7, and 13.2,
respectively (Table 3). The relative importance of other predictors
(e.g., evaporation and temperature) ranged from only 2.4 to 12.5.
The spatial distributions of the importance varied greatly among
the predictor variables (Table 3 and Fig. S3). DOY played an
important role in most areas, especially for Central China. AOD was
relatively less important in Central China than other parts of China.
The importance measures of atmospheric pressure, wind speed,



Fig. 4. Estimation bias of average PM2.5 concentrations due to missing AOD retrievals for (AeD) each quarter and (E) the whole year of 2014 in China. The estimation bias is the
difference between the average of all predicted daily PM2.5 concentrations and the average of those with AOD retrievals. Areas with no AOD retrievals during the study periods are
not included (blank areas within the study domain).

Table 3
Average variable importance in the GW-GBM model for each region of China.

Regiona DOYb AOD PRS TEM WIN EVP RHU SSD PRE

Central China 42.6 6.7 9.1 10.0 4.9 8.5 7.6 6.1 4.6
East China 36.1 7.3 9.7 12.3 6.1 8.5 7.5 7.8 4.8
North China 22.0 12.3 12.4 15.1 8.4 11.7 7.8 8.5 1.8
Northeast China 22.8 10.5 7.5 17.5 11.9 11.0 9.7 7.8 1.4
Northwest China 22.2 18.2 15.0 12.9 11.0 5.9 6.5 6.9 1.4
South China 29.2 8.1 11.1 12.5 10.9 6.6 12.9 5.0 3.9
Southwest China 27.7 14.9 16.3 8.4 12.6 6.9 5.4 4.6 3.2
Nation 25.7 13.7 13.2 12.5 10.4 8.1 7.4 6.6 2.4

a Regions are labelled on Fig. S1.
b Variable acronyms: Day of Year (DOY), Aerosol Optical Depth (AOD), Atmo-

spheric Pressure (PRS), Air Temperature (TEM), Wind Speed (WIN), Evaporation
(EVP), Relative Humidity (RHU), Sunshine Duration (SSD), and Precipitation (PRE).
Please see Fig. S3 for the detailed spatial distributions of variable importance.
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and sunshine duration were relatively higher in Northwest China
and Tibetan Plateau than in other regions. Air temperature
exhibited high importance in Northeast China and a coastal part of
South China. The North China Plain (with notoriously severe PM2.5
pollution) showed higher importance of evaporation and sunshine
duration than other regions. The importance measures of relative
humidity and precipitationwere relatively higher in South and East
China, respectively.

4. Discussion

The GW-GBM model showed good performance in predicting
continuous spatiotemporal PM2.5 concentrations in China. Ac-
cording to the values of R2, the performance of the GW-GBM
(R2 ¼ 0.76) was better than a previous national study with
R2 ¼ 0.64 (Ma et al., 2014), a regional study in the North China Plain
with R2 ¼ 0.61 using 10-fold leave-10%-cities-out cross-validation
(Lv et al., 2016), and other previous studies (Table S4). These studies
employed artificial neural network, Bayesian hierarchical model,
geographically weighted regression, and mixed-effects models. It is
worthy to note that, besides the model algorithms and predictor
variables, validation strategies also affected the resulting values of
statistical measures for model performance. For cross-validation,
input data could be partitioned by data points, monitoring sites,
or grid cells, which were named as sample-, site-, or cell-based
cross-validation, respectively.

In this study cell-based 10-fold cross-validationwas used, where
the training cells are partitioned into 10 groups. In another national
study, Ma et al. (2016a) used sample-based cross-validation as
indicated in their later study (Ma et al., 2016b), where the samples
of data points were partitioned into 10 groups, and reported a
higher R2 of 0.79. In this study whenmissing-AOD data points were
excluded (to be comparable with the previous studies), the sample-
and site-based cross-validations resulted in much better perfor-
mance, according to statistical measures (R2 ¼ 0.88 and 0.87,
respectively), than the cell-based cross-validation (R2 ¼ 0.74)
(Table S5). This was probably due to higher correlation between
training and predicting datasets for the sample-/site-based than
the cell-based cross-validation. Since the main purpose of the
models was to predict PM2.5 concentrations in unmonitored cells,
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the training/predicting data partition of the cell-based cross-vali-
dation better reflected the relationship between training and pre-
dicting data for real prediction. Moreover, a higher density of
monitoring sites was available in urban areas, and PM2.5 concen-
trations observed within a city were usually similar to each other.
Compared to cell-based cross-validation where virtually one
“average” site was considered for each cell, site-based cross-vali-
dation might lead to over-optimistic estimation of model perfor-
mance due to the repeated uses of similar measurements within a
cell (Lv et al., 2016).

The geographically weightedmethod refined the GBMmodel by
explicitly addressing the spatial nonstationarity of the dependence
of PM2.5 concentrations on predictor variables. It was recognized
that the relationship between PM2.5 concentrations and AOD was
spatially nonstationary, especially across a large region (Paciorek
and Liu, 2009). Also, the spatial nonstationarity was suggested by
the spatial variability on the relative importance of predictor vari-
ables across China (Table 3, Fig. S3). The spatial nonstationarity
between PM2.5 concentrations and AOD was partially addressed by
the meteorological variables. Moreover, the geographically
weightedmethod implemented smoothing kernels to screen quasi-
stationary areas and to smooth transitions between nonstationary
areas. Although the spatial nonstationarity could be addressed by
including spatial coordinates as predictor variables in the model,
apparent artificial strips emerged in the predicted spatial distri-
butions of PM2.5 concentrations (Fig. S4). Furthermore, it is also
important to address temporal nonstationarity between PM2.5

concentrations and AOD (Kloog et al., 2011). With sufficient
computing resources in the future, spatiotemporal smoothing
kernels may be implemented in the GW-GBM model to address
spatial and temporal nonstationarity simultaneously. Note that the
GW-GBM model consists of an ensemble of GW-GBM sub-models,
whose number is proportional to the complexity of smoothing
kernels implemented, thus it is much more computationally
expensive than the original GBM model.

The important predictor variables on the PM2.5 concentrations
were identified, which provided valuable information for
advancing PM2.5 prediction in the future. The seasonality of PM2.5
concentrations (DOY) derived from the monitoring data was the
most important variable. In general, the PM2.5 concentrations were
relatively low in warm seasons and high in cold seasons, resulting
from the seasonality of pollutant emissions and meteorological
conditions. The meteorological variables were also highly impor-
tant for predicting PM2.5 concentrations. Air pollutants tended to
accumulate when the atmospheric pressure were high and the
wind speed were low, which might be enhanced by surface tem-
perature inversion (Zhao et al., 2013). Scavenging by precipitation
was important to removal of PM2.5 (Tai et al., 2010). While AODwas
commonly acknowledged as a good indicator of ambient PM2.5, in
this study its importance measure was similar to individual mete-
orological variables. Besides the limited availability of AOD data in
the study area (<50% coverage as an annual average), the PM2.5-
AOD relationship of high uncertainty also degraded the importance
of AOD (Paciorek and Liu, 2009). This relationship for example
might be affected by the vertical profile of aerosol. Previous studies
used the vertical profile simulated by CTMs, e.g., GEOS-Chem, as a
scaling factor to estimate the proportion of aerosol depth attrib-
utable to ground-level PM2.5 (Liu et al., 2004; van Donkelaar et al.,
2006). In the future, we also intend to integrate the vertical profile
of aerosol into the GW-GBM model for better prediction
performance.

Obvious nonlinear and interaction effects of the predictor vari-
ables on the PM2.5 concentrations were revealed by the partial
dependence plots and interaction depths, respectively. A partial
dependence plot shows the effect of a variable on the response after
accounting for the average effects of all other variables in themodel
(Supplement S4). Nonlinearity means a nonlinear relationship be-
tween a predictor variable and PM2.5 concentrations. Interaction is
used when the effects of multiple predictor variables on PM2.5
concentrations are not equal to the sum of their individual effects.
In the GBM or GW-GBM model, while a single decision tree cannot
produce nonlinearity, a combination of hundreds or thousands of
shrunken trees can fit a nonlinear function (Eq. (7)). The partial
dependence plots of the original GBM model reflect the overall
nonlinear relationships of the PM2.5 concentrations with a few
predictor variables (Fig. S5). For example, the partial dependence of
PM2.5 concentrations on evaporation initially decreased quickly
along with the increase of evaporation and then leveled off. In
addition, a GW-GBM model consisting of tree stubs indicated no
interaction effect, and deep tree depth indicated strong interaction
effects. In this study, the complex tree structures (interaction or
tree depth: 8.0 ± 2.4) of the fitted GW-GBM model suggest strong
interaction effects between the predictor variables on the PM2.5
concentrations. Therefore, additive or linear structures were inad-
equate for modelling PM2.5 concentrations.

The GW-GBM model improved the prediction capability for
PM2.5 by handling incomplete input data, particularly partially
missing AOD retrievals. In Northeast China, for example, AOD re-
trievals tended to be missing in the first and fourth quarters
(Fig. S2), which might be related to high reflectance of snow. At the
same time, high PM2.5 concentrations were also predicted (Table 2).
More fuel was combusted for heating in cold days, usually accom-
panied with snow cover (Xu et al., 2011), resulting in higher PM2.5
concentrations compared to warmer days when AOD retrievals
were available. In contrast, AOD retrievals in South China tended to
bemissing in the first and second quarters (Fig. S2), whichmight be
due to cloud cover associated with rain. Compared to sunny days,
PM2.5 concentrations in rainy days were lower because of rain
scavenging. If a model did not generate PM2.5 predictions for the
data points with missing AOD data during those months (Ma et al.,
2016a), it would generate biased estimates of the pollution and
exposure level in terms of average concentrations (Fig. 4). Since
missing AOD data are frequently observed during highly polluted
periods in China, missing data handling is very important for ac-
curate PM2.5 predictions in China.

The GW-GBM model equipped with surrogate splits was supe-
rior to traditional statistical models in handling missing data for
PM2.5 prediction. Traditional statistical models were generally
incapable of making predictions for the modeling time nodes when
input data were partially missing. Thus, these models relied on
other methods to fill the data gaps. In previous studies, data fusion
or interpolation were conducted to fill AOD gaps (Lv et al., 2016;
Nguyen et al., 2012; Xu et al., 2015), where AOD were fused from
multiple data sources and/or geostatistical interpolation (e.g.,
Kriging) was used to fill the missing values. Another method was to
interpolate PM2.5 values estimated for the data points with AOD
retrievals to those with missing values through smoothing such as
thin plate spline (Kloog et al., 2011). However, change-of-support or
uncertainty propagation might emerge as a result, and the inter-
polation tended to smooth spatial variations of AOD or PM2.5. To
avoid these problems, the GW-GBM model built surrogate splits
based on the patterns learned from the training data with AOD
retrieved from the Aqua satellite only. Surrogate splits utilized
correlations of AOD values with the other predictor variables to
reduce the loss of information due to missing values (Hastie et al.,
2009). As the AOD missing rates were considerable in PM2.5 pre-
diction, it was better to use a model that could handle missing data
than to use models that relied on additional missing data filling
methods.
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5. Conclusions

A spatially explicit machine learning algorithm, named GW-
GBM, was developed to predict the spatiotemporal distributions
of continuous daily PM2.5 concentrations in China. All predictor
variables of the model are readily available from public data sour-
ces. The GW-GBM model addressed spatial nonstationarity of the
dependence of PM2.5 on environmental conditions, considerably
improving the predictive performance. The GW-GBM model
revealed interaction and nonlinear effects that are underrepre-
sented by conventional statistical models. The GW-GBMmodel also
overcame the estimation bias of PM2.5 concentrations due to
missing AOD retrievals, which tends to bias the exposure analyses.
This study provided reliable data, such as exposure intensity and
duration, for assessing acute human health effects of PM2.5 expo-
sure in China. In the future, comparative analyses with epidemio-
logical data in China are expected to provide helpful information for
refining exposure-response curves at higher PM2.5 concentrations.
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