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a b s t r a c t

Quantifying pesticide loading into the Sacramento-San Joaquin Delta of northern California is critical for
water quality management in the region, and potentially useful for biological weed control planning. In
this study, the Soil and Water Assessment Tool (SWAT) was applied to model streamflow, sediment, and
pesticide diuron loading in the San Joaquin watershed, a major contributing area to the elevated pesticide
levels in the downstream Delta. The Sequential Uncertainty Fitting version 2 (SUFI-2) algorithm was
employed to perform calibration and uncertainty analysis. A combination of performance measures
(PMs) and standardized performance evaluation criteria (PEC) was applied to evaluate model perfor-
mance, while prediction uncertainty was quantified by 95% prediction uncertainty band (95PPU). Results
showed that streamflow simulation was at least “satisfactory” at most stations, with more than 50% of
the observed data bracketed by the 95PPU. Sediment simulation was rated as at least “satisfactory” based
on two PMs, and diuron simulation was judged as “good” by all PMs. The 95PPU of sediment and diuron
bracketed about 40% and 30% of the observed data, respectively. Significant correlations were observed
between the diuron loads, and precipitation, streamflow, and the current and antecedent pesticide use.
Results also showed that the majority (>70%) of agricultural diuron was transported during winter
months, when direct exposure of biocontrol agents to diuron runoff is limited. However, exposure in the
dry season could be a concern because diuron is relatively persistent in aquatic system. This study not
only provides valuable information for the development of biological weed control plan in the Delta, but
also serves as a foundation for the continued research on calibration, evaluation, and uncertainty analysis
of spatially distributed, physically based hydrologic models.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Increasing pesticide contamination of surface water has raised
substantial concern, especially in the agriculturally dominated San
Joaquin watershed in California. Extensive pesticide application in
this region has led to water quality degradation, posing a potential
threat to aquatic organisms in the watershed (Luo and Zhang, 2010;
Starner and Zhang, 2011). In addition, pesticide loads exported from
the San Joaquin watershed eventually drain into the waterways of
dWater Resources, University
.
).
the Sacramento-San Joaquin Delta, which is an ecologically rich
area that also serves as a major hub of California's water supply
(Healey et al., 2016; Orlando et al., 2014).

Recently, invasive aquatic weeds have dominated several areas
in the Delta, blocked the waterways and severely disrupted the
ecosystems (USDA-DBW, 2012a, b). Biological control is an envi-
ronmentally sound and promising means of mitigating floating
aquatic weed invasion (Coetzee et al., 2011; Julien, 2008). The
USDA-Agricultural Research Service Delta Region Areawide Aquatic
Weed Project (DRAAWP) has been initiated to develop and imple-
ment adaptive, integrated aquatic weed control strategies,
including biological control. However, the effectiveness of biocon-
trol agents may be influenced by pesticide loading from the up-
stream agricultural watersheds. As part of the DRAAWP, this study
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aims to quantify pesticide loading from the San Joaquin watershed
into the Delta, providing information to facilitate the development
of biological weed control plans. Diuron was selected as the target
pesticide because it is toxic to insects and one of the most
frequently detected with the highest maximum concentrations at
the inlet to the Delta (Kegley et al., 2011; Orlando et al., 2014).

Hydrologic models are increasingly used to support environ-
mental exposure and risk assessments, pollution control planning,
and decisionmaking (Abbaspour et al., 2015; Daggupati et al., 2015;
Moriasi et al., 2015b), as they are cost-effective and can be used to
quantitatively predict pollutant fate and transport under a wide
range of scenarios. Improved understanding of hydrology and
biogeochemical processes, advances in Geographic Information
System (GIS) technology, and exponential growth in computing
power have led to increasingly sophisticated physically based,
spatially distributed, watershed-scale models. One of the most
widely used watershed models is the Soil and Water Assessment
Tool, SWAT (Arnold et al., 2015a; Neitsch et al., 2011). SWAT was
developed to predict water, sediment and agricultural chemical
yields under varying soil, land use and management conditions
(Arnold et al., 2012). The ability of SWAT in simulating streamflow
(Ficklin and Zhang, 2013; Saha et al., 2014; Singh et al., 2005; Spruill
et al., 2000; Van Liew and Garbrecht, 2003; Zhou et al., 2014),
sediment (Abbaspour et al., 2007; Kliment et al., 2008; Lu et al.,
2014; Oeurng et al., 2011; Santhi et al., 2001; Shen et al., 2009;
Xu et al., 2009), and agrochemicals including pesticides
(Bannwarth et al., 2014; Boithias et al., 2011; Ficklin et al., 2013;
Kannan et al., 2006; Larose et al., 2007; Luo et al., 2008) on an
annual or monthly basis has been demonstrated, while inadequate
model performance has also been observed (Bieger et al., 2014;
Fohrer et al., 2014; Gassman et al., 2007, 2014; Kim et al., 2010;
Zeiger and Hubbart, 2016).

Model calibration is an inevitable process since it is almost
impossible to take enough measurements that cover the entire
watershed at the desired spatial and temporal resolution for a
specified hydrologic process (Guzman et al., 2015), and some pa-
rameters are difficult to measure or define physically (Malone et al.,
2015). Calibration should focus on the most uncertain and sensitive
parameters (Malone et al., 2015), and should be justified by the
actual physical knowledge of the relevant watershed processes
(Arnold et al., 2012). Constraints on parameter ranges are also
necessary to ensure that processes are within reasonable limits
(Arnold et al., 2015b). It is beneficial to calibrate the model using
different output variables at multiple sites, as this will allow for
better representation of the diverse characteristics of a watershed
and help reduce the problem of equifinality (Daggupati et al., 2015),
i.e. an acceptable model prediction might be achieved bymore than
one set of parameter values (Beven, 1993).

The increasing use of numerical models for scientific inquiry and
regulatory planning calls for a more rigorous procedure for model
performance evaluation (Moriasi et al., 2015b). Quantitative per-
formance measures (PMs) are used to provide objective model
assessment. A combination of different PMs should be applied to
overcome the bias of individual methods (Krause et al., 2005). On
the other hand, subjectivity is often involved in judging the results
of PMs (Bennett et al., 2013). Such limitations might be overcome
by using standardized performance evaluation criteria (PEC), which
provide objective indications of model adequacy across different
studies (Moriasi et al., 2015a). Recently, PEC guidelines for hydro-
logic modeling has been developed and refined based on a meta-
analysis of model performance data reported in the literature
(Moriasi et al., 2007, 2015a). There are, to the authors' knowledge,
no studies that apply these PEC guidelines for comprehensive
evaluation of model performance.

Moreover, it is important to perform proper uncertainty analysis
given the uncertainties inherent in hydrologic modeling (Beven,
1993; Guzman et al., 2015). These include uncertainties in the
input and output data, model structure, and parameterization. In
the past few decades, many techniques have been developed and
applied to assess prediction uncertainty in hydrologic modeling
(Yang et al., 2007). The Sequential Uncertainty Fitting version 2
(SUFI-2) program is one such technique that is able to perform a
combined calibration and uncertainty analysis (Abbaspour et al.
1997, 2004). It accounts for all sources of uncertainties by an
enhanced parameter uncertainty (Yang et al., 2008). SUFI-2 has
high efficiency in achieving good prediction uncertainty ranges in
terms of coverage of the observed data (Yang et al., 2008), and has
been successfully applied in many modeling studies (Abbaspour
et al. 2007, 2015; Ficklin et al., 2013; Schuol et al., 2008a, 2008b;
Zhou et al., 2014). The limitations of SUFI-2 include lack of a
rigorous statistical foundation, lack of considering parameter cor-
relations, and inclusion of some simulations with poor objection
function values (Yang et al., 2008).

In this study, our goal was to simulate pesticide loading from the
San Joaquin watershed to the Sacramento-San Joaquin Delta. Spe-
cifically, our objectives were to: (1) perform calibration and vali-
dation of SWAT for simulating streamflow and sediment in the San
Joaquin watershed, (2) calibrate SWAT for simulating diuron
loading in the study area, (3) evaluate model performance using
PMs and standardized PEC, and (4) carry out uncertainty analysis
using the SUFI-2 algorithm to assess model prediction uncertainty.
This study not only informs weed control planning and water
quality management in the Delta region, but also provides a stan-
dard framework of model calibration, evaluation, and uncertainty
analysis for large-scale hydrologic modeling in general.

2. Materials and methods

2.1. Study area

The San Joaquinwatershed in the California's Central Valley was
selected as the study area (Fig. 1). Its total area, as defined in this
study, is approximately 15 000 km2. It has a Mediterranean climate
with hot, dry summers and cool, wet winters. The soils are mostly
clay loams to fine sandy loams. The major land use types include
cropland, pasture-based livestock farming, and forest (USDA-NASS,
2015). Land area occupied by pasture and forest was about 7400
and 1100 km2, respectively. Almond has the largest cultivated area
of 2000 km2, followed by vineyard (1000 km2), alfalfa (900 km2),
oat (300 km2), corn (300 km2), cotton (200 km2) and tomato
(200 km2). The San Joaquin River originates in the Sierra Nevada
Mountains and descends onto the valley floor, where it flows
northwest before reaching the Sacramento-San Joaquin Delta. The
watershed outlet is defined at the San Joaquin River at Vernalis, a
United States Geological Survey (USGS) gauging station
(#11303500, Table 1 and Fig. 1). Four watershed inlets were defined
at the USGS stations below dams on the eastern major rivers.

2.2. Data acquisition

Spatial environmental datasets were obtained from public da-
tabases maintained by various government agencies. For topo-
graphic data, we retrieved the 1/3 arc-second (10 m) digital
elevation models from the 3D Elevation Program, which has an
altitude resolution of 0.001 m (USGS, 2015). Stream network data
were obtained from the 1:100 000 scale National Hydrography
Dataset (USGS, 2016b). The stream network dataset was super-
imposed onto the topography map to assist with watershed and
stream network delineation in flat terrain. Land use data were
extracted from the 2014 Cropland Data Layer (USDA-NASS, 2015).



Fig. 1. Study area of the San Joaquin watershed.

Table 1
Inlet and outlet stations within the San Joaquin watershed.

USGS ID Reach No.a Name Type Longitude Latitude Area drained by reach (km2)

11251000 San Joaquin River Inlet �119.72 36.98
11270900 Merced River Inlet �120.33 37.52
11289650 Tuolumne River Inlet �120.44 37.67
11302000 Stanislaus River Inlet �120.64 37.85
11254000 27 San Joaquin River at Mendota Outlet �120.38 36.81 1193
11261500 18 San Joaquin River at Fremont Outlet �120.93 37.31 10160
11274538 13 Orestimba Creek Outlet �121.02 37.41 407
11274550 11 San Joaquin River at Crows Landing Outlet �121.01 37.43 11960
11274630 9 Del Puerto Creek Outlet �121.21 37.49 188
11290000 6 Tuolumne River Outlet �120.98 37.63 343
11303000 3 Stanislaus River Outlet �121.11 37.73 261
11303500 1 San Joaquin River at Vernalis Outlet �121.27 37.68 14960

a Reach number for outlet refers to the stream that drains into the corresponding outlet. This is also the subbasin number where the reach originates.
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Soil data were retrieved from the Soil Survey Geographic database
(SSURGO) (USDA, 2015). Precipitation and other weather
information were obtained from the SWAT internal weather data-
base. Diuron application data were retrieved from the California
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Pesticide Use Reporting (PUR) database (CDPR, 2015). Physi-
ochemical properties of diuron (Table 2) were extracted from the
built-in pesticide database in SWAT and the literature (Arnold et al.,
2015a; Moncada, 2004).

Daily streamflow and suspended sediment monitoring data
were retrieved from the National Water Information System
(NWIS) (USGS, 2016a). Streamflow data were available at eight
stations while sediment data were only available at the watershed
outlet (Table 1 and Fig. 1). The monitoring data for dissolved diuron
concentrations were obtained from NWIS through the Water
Quality Portal (NWQMC, 2016), and the California Surface Water
Database (SURF) (CDPR, 2016). Sufficient pesticide data (>30 data
points) were only available at the watershed outlet. A time-
centered scheme was adopted to convert concentration to
monthly load based on the time of sample collection (Du et al.,
2006; Jaynes et al., 1999). The inflow at the four watershed inlets
is dominated by high-quality snow melt from the Sierra Nevada
mountain range. Therefore, inflow is assumed to be free of
pesticides.
2.3. Model setup

The SWAT version 2012 and its ArcSWAT interface were
selected. The study area was delineated into 27 subbasins using a
threshold of 550 km2. A total of 647 hydrologic response units
(HRUs) were defined by overlaying topography, soil and land use
maps based on a threshold of 5%, which was used to eliminate
minor slope, soil and land use classes based on their percent
coverage of the subbasin. The simulationwas performed from 2001
to 2014, with the first 2 years as the warm-up period. The model
was calibrated and validated using a temporal split-sample
approach. Flow and sediment were calibrated and validated using
data from 2003 to 2008, and 2009 to 2014, respectively. Annual
precipitation during the study period ranged from 234 to 450 mm,
with average annual precipitation of 336 and 361 mm for the
calibration and validation periods, respectively. The study period
was considered as slightly wetter than average, considering the
latest 30-year average precipitation of 325 mm over the San Joa-
quin Valley (NOAA, 2017). As the monitoring data for diuron were
only available after 2009, we calibrated pesticide for this period,
and thus no validation was performed for pesticide due to data
limitation. Pesticide calibration was performed by changing only
the pesticide parameters while keeping the calibrated flow and
sediment parameters unchanged. The modeling results were
evaluated at monthly time steps.

The curve number method was selected for estimating surface
runoff. The automatic irrigation operation routine was enabled to
simulate irrigation water use based on soil water content, due to
the lack of actual irrigation data on a daily basis. SWAT supports
two types of water routing methods: the variable storage routing
Table 2
Physiochemical properties of diuron as SWAT input parameters.

Parameter name Description

SKOC Soil adsorption coefficient normalized for soil organic carb
WOF Wash off fraction
HLIFE_F Degradation half-life of the chemical on the foliage (days)
HLIFE_S Degradation half-life of the chemical on the soil (days)
WSOL Solubility of the chemical in water (mg/L)

HENRY Henry's Law Constant
CHPST_REA Pesticide reaction coefficient in reach (day�1)
SEDPST_REA Pesticide reaction coefficient in reach bed sediment (day�1

CHPST_VOL Pesticide volatilization coefficient in reach (m/day)
CHPST_KOC Pesticide partition coefficient between water and sedimen
method and the Muskingum routing method. We selected the
Muskingum method because the variable storage method tended
to overestimate streamflow. For sediment routing, the physically
based simplified Bagnold equation (CH_EQN-1) was selected. Pre-
liminary comparison of CH_EQN-1 and the default simplified Bag-
nold equation (CH_EQN-0) showed that CH_EQN-1 matched the
observations better. Further details about this are described in the
Results and Discussion sections.
2.4. Model calibration and uncertainty analysis using the SUFI-2
algorithm

The SUFI-2 algorithm in the SWAT-CUP (Calibration and Un-
certainty Procedures) program was applied for model calibration
and uncertainty analysis (Abbaspour, 2015). In SUFI-2, parameter
uncertainties are described by uniform distributions and are
propagated through the model to produce prediction uncertainty
quantified by a 95% prediction uncertainty band (95PPU). We
selected f (¼ 0e1) as the objective function since it is not domi-
nated by theworst events (Krause et al., 2005; Schuol et al., 2008b):

Maximize : f ¼
� jbjR2 if jbj � 1
jbj�1R2 if jbj>1

where b is the gradient of the regression line, R2 is the coefficient of
determination, and f is the weighted R2. The procedure continues
until a desired fit between the observed data and the 95PPU is
obtained, as judged by the P-factor and R-factor. The P-factor is the
percentage of the observed data bracketed by the 95PPU, and the R-
factor is the normalized thickness of the 95PPU. A balance must be
reached between the two as a larger P-factor can be found at the
expense of a larger R-factor (Abbaspour et al., 2015).

We took the following steps to calibrate SWAT for the San Joa-
quin watershed. First, SWAT was set up using measured and esti-
mated site-specific parameters when possible. The default SWAT
was then tested for streamflow simulation, which showed a
promising outcome especially for the watershed outlet (NSE ¼ 0.9).
It is crucial to start with a good default model; otherwise the
optimization algorithm might be lost in seaching the parameter
space. Secondly, parameters for calibration were selected based on
physical watershed understanding, plotting results of one-at-a-
time sensitivity analysis, and the literature (Abbaspour et al.,
2015; Arnold et al., 2012; Luo et al., 2008; Veith et al., 2010). Cali-
bration was focused on the most uncertain and sensitive parame-
ters (Table 3). Parameter values were also constrained to the
published or physically realistic ranges (Malone et al., 2015). Rela-
tive changes were assigned to distributed spatial parameters in
order to preserve their spatial variation and to keep the number of
parameters small (Li et al., 2010). Thirdly, SWAT was spatially
calibrated for streamflow at each outlet station by freezing the
Value Data source

on (ml/g) 480 SWAT built-in pesticide database
0.45
30
90
42

2.09E-08 (Moncada, 2004)
0.001271

) 0.000696
0

t in reach (m3/g) 2.15E-05



Table 3
Sensitive SWAT parameters and their final calibrated ranges.

Parameter Lower limit Upper limit

Parameters calibrated for streamflow
Outlet 1, San Joaquin River at Vernalis
v__CH_N2.rte________1-2,4-5,7-8,10 0.015 0.055
Outlet 9, Del Puerto Creek
v__CH_K2.rte________9 65.5 81.7
r__SOL_AWC().sol________9 0.53 0.65
r__CN2.mgt________9 �0.66 �0.53
Outlet 11, San Joaquin River at Crows Landing
v__CH_N2.rte________11-12,14-17 0.010 0.041
v__CH_K2.rte________11-12,14-17 8.8 17.7
Outlet 13, Orestimba Creek
r__CN2.mgt________13 �0.25 0.00
v__CH_K2.rte________13 0.0 25.4
Outlet 18, San Joaquin River at Fremont
v__CH_N2.rte________18-26 0.026 0.065
v__CH_K2.rte________18-26 0.0 39.6
Outlet 27, San Joaquin River at Mendota
v__CH_K2.rte________27 1.5 30.9
r__CN2.mgt________27 0.01 0.31
Parameters calibrated for sediment load
Outlet 1, San Joaquin River at Vernalis
v__PRF_BSN.bsn 0.24 0.75
v__SPEXP.bsn 1.1 1.3
v__SPCON.bsn 0.00010 0.00032
Parameters calibrated for pesticide load
Outlet 1, San Joaquin River at Vernalis
v__AP_EF.pest.dat 0.75 0.93
v__HLIFE_S.pest.dat 90 381
v__PERCOP.bsn 0.69 0.94

CH_K2: effective hydraulic conductivity in the main channel alluvium.
CH_N2: Manning's N value for the main channel.
CN2: initial curve number for moisture condition II.
SOL_AWC: available water capacity of the soil layer.
PRF_BSN: peak rate adjustment factor for sediment routing in the main channel.
SPEXP: exponent parameter for calculating sediment transport capacity.
SPCON: linear parameter for calculating sediment transport capacity.
AP_EF: application efficiency.
HLIFE_S: degradation half-life of diuron in the soil.
PERCOP: pesticide percolation coefficient.
Parameter identifier is specified as x__〈parname〉.________〈subbsn〉, where x__ is
the code to indicate the type of change to be applied to the parameter. v__ means
the existing parameter is replaced by a given value, and r__ means an existing
parameter value is multiplied by (1þ a given value); 〈parname〉 is the name of the
parameter; is the file extension code for the file containing the parameter; 〈subbsn〉
is the subbasin number. Modification is applied only to the parameter(s) associated
with the specified subbasin(s). For more details please refer to (Abbaspour, 2015).
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parameter(s) in the upstream subbasin(s). This procedure was only
feasible for streamflow, as sufficient monitoring data for other
constituents were only available at the watershed outlet. Region-
alization of parameters helps to ensure that the variability for each
subbasin is captured and to improve the efficiency of the subse-
quent multi-site calibration. Finally, multi-site calibration (i.e.
including all stations within the watershed) was performed with
500 times per iteration by calibrating flow, sediment, and pesticide
sequentially.
2.5. Model performance evaluation and statistical analysis

The following PMs were applied to assess SWAT with the best
calibrated parameters: (1) model-to-data hydrograph, (2) coeffi-
cient of determination (R2), (3) Nash-Sutcliffe efficiency (NSE), and
(4) percent bias (PBIAS). For R2, NSE and PBIAS, the corresponding
PEC were established according to a recent review (Moriasi et al.,
2015a) (Table 4). In addition, the Pearson correlation analysis was
performed to examine the linear relationship between dissolved
diuron loads and the three other variables: precipitation, stream-
flow and diuron use. All the statistical analysis and data
visualizationwere performed in R, a flexible and powerful language
for statistical computing and graphics (Kahle andWickham, 2013; R
Development Core Team, 2015).

3. Results

3.1. Simulation of streamflow

The sensitivity analysis identified 12 parameters that played a
significant role in streamflow simulation (Table 3). The hydrograph
shape and volume were most sensitive to channel parameters of
Manning's N value for the main channel (CH_N2) and effective
hydraulic conductivity in the main channel alluvium (CH_K2),
while the peak flow was most sensitive to landscape parameters of
initial curve number for moisture condition II (CN2) and available
water capacity of the soil layer (SOL_AWC). The sensitivity of these
parameters varies spatially. For the mainstem of the San Joaquin
River (reach number ¼ 1, 11, 18, 27, Table 1), the most sensitive
parameters were those that govern channel routing. For the small
tributaries on the western side (reach number ¼ 9, 13), streamflow
was most sensitive to landscape parameters and CH_K2, suggesting
the importance of surface runoff generation and in-stream leakage.
For the large eastside tributaries, no parameters were found to be
highly sensitive.

At the watershed outlet, monthly streamflow calibration was
judged as at least “good” based on all PMs (Table 5). During the
validation period, the model was rated as “very good” based on R2

and NSE, but “unsatisfactory” based on PBIAS (18%). For other sta-
tions along the San Joaquin River and the major eastern tributaries
(Stanislaus River and Tuolumne River), the model also attained
reasonable performance ratings during both calibration and vali-
dation periods. The two major peaks in the San Joaquin River were
underestimated in April of 2006 and 2011 (Fig. 2f, g and h).
Streamflowwas less accurately simulated in thewestern tributaries
(Del Puerto Creek and Orestimba Creek).

On average, more than 50% and 60% of the variation in
streamflow was bracketed by the 95PPU for stations along the San
Joaquin River and the major eastern tributaries during the cali-
bration and validation periods, respectively, confirming that
streamflow simulation was satisfactory. The P-factor was lower for
the western streams, and generally increased from upstream to
downstream. The R-factorwas less than 1 for all stations, suggesting
acceptable thickness of the 95PPU envelope.

3.2. Simulation of sediment

The CH_EQN-0 (Bagnold) model significantly overestimated
sediment load at the watershed outlet during peak events (Fig. 3a).
The CH_EQN-1 (physically based Bagnold) model produced better
matches between predictions and observations (Fig. 3b). The two
major peaks in sediment discharge were overestimated using
CH_EQN-1 in April of 2006 and March of 2011. Only the CH_EQN-1
model was selected for subsequent analyses. In the CH_EQN-1
model, sediment load was most sensitive to a few channel pa-
rameters: PRF_BSN, SPCON and SPEXP. PRF_BSN is the peak rate
adjustment factor for sediment routing in the main channel. In
SWAT, sediment transport capacity is a function of the peak channel
velocity. PRF_BSN was incorporated to calculate peak flow rate
based on the mean daily flow, because SWAT is not able to directly
simulate subdaily hydrograph when daily precipitation is used as
the input. SPCON and SPEXP are the linear and exponent parame-
ters for calculating sediment transport capacity, respectively.

During the calibration period, model performance was rated as
at least “satisfactory” based on R2 and NSE but “unsatisfactory”
based on PBIAS, while during the validation period, the result was



Table 4
Evaluation metrics and associated performance ratings (adapted from Moriasi et al., 2015a).

Performance rating Streamflow Sediment Pesticidea

R2 ¼

0
BBBB@

Pn

i¼1
ðyi�yÞðbyi�byÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðyi�yÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðbyi�byÞ2q

1
CCCCA

2

Very good R2 >0:85 R2 >0:80 R2 >0:70
Good 0:75<R2 � 0:85 0:65<R2 � 0:80 0:60<R2 � 0:70
Satisfactory 0:60<R2 � 0:75 0:40<R2 � 0:65 0:30<R2 � 0:60
Unsatisfactory R2 � 0:60 R2 � 0:40 R2 � 0:30

NSE ¼ 1�
Pn

i¼1
ðyi�byi Þ2Pn

i¼1
ðyi�yÞ2

Very good NSE>0:80 NSE>0:80 NSE>0:65
Good 0:70<NSE � 0:80 0:70<NSE � 0:80 0:50<NSE � 0:65
Satisfactory 0:50<NSE � 0:70 0:45<NSE � 0:70 0:35<NSE � 0:50
Unsatisfactory NSE � 0:50 NSE � 0:45 NSE � 0:35

PBIAS ¼
Pn

i¼1
ðbyi�yiÞPn

i¼1
yi

� 100 ð%Þ
Very good jPBIASj<5 jPBIASj<10 jPBIASj<15
Good 5 � jPBIASj<10 10 � jPBIASj<15 15 � jPBIASj<20
Satisfactory 10 � jPBIASj<15 15 � jPBIASj<20 20 � jPBIASj<30
Unsatisfactory jPBIASj � 15 jPBIASj � 20 jPBIASj � 30

Note: yi and byi are the ith observed and simulated values, y and by is the average of the observed and predicted values, and n is the sample size.
a Criteria for pesticides were adopted from those for nitrogen.

H. Chen et al. / Water Research 121 (2017) 374e385 379
rated as at least “good” based on R2 and PBIAS but “unsatisfactory”
based on NSE (Table 5). Respectively, about 30% and 50% of the
measured data were bracketed by the 95PPU during the calibration
and validation periods, with R-factor below 1, but larger than those
of streamflow.

3.3. Simulation of pesticide

Pesticide diuron was predominantly applied over the winter
season (November through February), which coincided with the
rainy season in California (Fig. 4). On average, 20,737 kg of diuron
was applied annually on agricultural land in the San Joaquin
watershed from 2009 to 2014. Application efficiency (AP_EF),
pesticide percolation coefficient (PERCOP), and degradation half-
Table 5
Calibration, evaluation, and uncertainty analysis for monthly streamflow, sediment, and

Station P-factor R-factor R2 R2 r

Calibration of streamflow and sediment (2003-2008)
Streamflow
San Joaquin River at Vernalis 0.50 0.37 0.91 Ver
Stanislaus River 0.47 0.00 0.99 Ver
Tuolumne River 0.21 0.00 0.99 Ver
Del Puerto Creek 0.07 0.20 0.12 Uns
San Joaquin River at Crows Landing 0.71 0.67 0.78 Goo
Orestimba Creek 0.29 0.78 0.00 Uns
San Joaquin River at Fremont 0.82 0.79 0.59 Uns
San Joaquin River at Mendota 0.32 0.35 0.79 Goo
Sediment
San Joaquin River at Vernalis 0.28 0.78 0.71 Goo
Validation of streamflow and sediment, and calibration of pesticide (2009-2014)
Streamflow
San Joaquin River at Vernalis 0.82 0.47 0.91 Ver
Stanislaus River 0.49 0.00 0.98 Ver
Tuolumne River 0.38 0.00 1 Ver
Del Puerto Creek 0.10 0.13 0 Uns
San Joaquin River at Crows Landing 0.92 0.84 0.85 Goo
Orestimba Creek 0.18 1.27 0 Uns
San Joaquin River at Fremont 0.90 1.27 0.6 Uns
San Joaquin River at Mendota 0.38 0.79 0.74 Sati
Sediment
San Joaquin River at Vernalis 0.47 0.98 0.78 Goo
Pesticide
San Joaquin River at Vernalis 0.31 0.85 0.69 Goo
life of diuron in the soil (HLIFE_S) were identified as the most
sensitive parameters for pesticide simulation (Table 3).

At the watershed outlet, pesticide calibration was rated as
“good” by all PMs (Table 5). Compared to the monitoring data, the
first peak of diuron load was well captured by SWAT, while the
second peak was overestimated (Fig. 4). For uncertainty analysis,
31% of the measured data were bracketed by the 95PPU, and the R-
factor was 0.85, which was larger than the values of streamflow.

Significant correlations were observed between the observed
and simulated diuron load, and precipitation and streamflow
(Table 6). The observed diuron load was strongly correlated with
the one-month and two-month antecedent diuron use, while the
simulated diuron loadwasmore related to diuron application in the
current month and one month earlier. According to model
pesticide loads in the San Joaquin watershed.

ating NSE NSE rating PBIAS (%) PBIAS rating

y good 0.89 Very good �5 Good
y good 0.99 Very good �3 Very good
y good 0.98 Very good �14 Satisfactory
atisfactory �2.16 Unsatisfactory 82 Unsatisfactory
d 0.74 Good �7 Good
atisfactory �0.59 Unsatisfactory �42 Unsatisfactory
atisfactory 0.57 Satisfactory 17 Unsatisfactory
d �0.99 Unsatisfactory 40 Unsatisfactory

d 0.52 Satisfactory �32 Unsatisfactory

y good 0.89 Very good 18 Unsatisfactory
y good 0.98 Very good 0 Very good
y good 0.99 Very good �7 Good
atisfactory �4.61 Unsatisfactory 102 Unsatisfactory
d 0.81 Very good 25 Unsatisfactory
atisfactory �1.27 Unsatisfactory 85 Unsatisfactory
atisfactory 0.49 Unsatisfactory 74 Unsatisfactory
sfactory �1.75 Unsatisfactory 54 Unsatisfactory

d 0.38 Unsatisfactory 0 Very good

d 0.58 Good 19.5 Good



Fig. 2. Observed (obs), simulated (sim), and the 95% prediction uncertainty (95PPU) of monthly average streamflow for a) the Tuolumne River, b) the Stanislaus River, c) the
Orestimba Creek, d) the Del Puerto Creek, e) the San Joaquin River at Mendota, f) the San Joaquin River at Fremont, g) the San Joaquin River at Crows Landing, and h) the San Joaquin
River at Vernalis.
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Fig. 3. Observed (obs), simulated (sim), and the 95% prediction uncertainty (95PPU) of monthly sediment load for the San Joaquin River at Vernalis using a) CH_EQN-0 (Bagnold)
and b) CH_EQN-1 (physically based Bagnold).

Fig. 4. Observed (obs), simulated (sim), and the 95% prediction uncertainty (95PPU) of monthly dissolved diuron load for the San Joaquin River at Vernalis (middle), monthly
precipitation averaged across four weather stations within the study area (top), and monthly diuron use summed over the study area (bottom).

Table 6
Pearson correlation coefficient matrix for monthly diuron simulation at the watershed outlet.

Precipitation Streamflowa Use-0b Use-1b Use-2b Use-3b

Simulated diuron load 0.50** 0.37** 0.51** 0.52** 0.30* 0.10
Observed diuron load 0.46* 0.42* 0.34 0.68** 0.76** 0.46*

**Significant at 0.01 level; * significant at 0.05 level; others non-significant (p > 0.05).
a Simulated and observed streamflow for simulated and observed diuron load, respectively.
b Use-0, Use-1, Use-2, and Use-3: current, one-month, two-month, and three-month antecedent diuron use.
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prediction, the diuron load accounted for approximately 0.95% of
the total agricultural use in the San Joaquin watershed during
2009e2014. The exportation rate of diuron ranged from 0.003 to
239 kg per month, and the peak loads (from December to February)
accounted for more than 70% of the annual yield.
4. Discussion

4.1. Simulation of streamflow

Calibration of a physically based model should focus on
matching the model to processes occurring in the watershed; lack
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of realistic representation of the system being modelled will likely
result in a model calibrated for a particular dataset rather than for
the watershed (Abbaspour et al., 2007; Malone et al., 2015; White
and Chaubey, 2005). In this study, we found that regionalization
of parameters was important as the dominant processes and
sensitivity of associated parameters varied spatially. For the San
Joaquin River, streamflow was heavily dependent on upstream
reservoir releases. Therefore, parameters associated with channel
routing played a key role in determining streamflow (Table 3). For
the ephemeral creeks on the western side, streamflow is mainly
driven by winter storm events. Consequently, landscape parame-
ters related to rainfall-runoff processes have greater impacts on
streamflow prediction.

Understanding the interaction of surface water and ground-
water is also important in surface water modeling. In SWAT,
parameter CH_K2 is used to describe the relationship between
streams and the groundwater system. A stream may be character-
ized as a losing or a gaining stream according to the contribution
from groundwater. For losing streams, CH_K2 is used to quantify
the rate of seepage toward the groundwater table. In the San Joa-
quin watershed, most western tributaries are ephemeral, lacking a
continuous groundwater contribution. In addition, regional
groundwater pumping has forced groundwater to flow away from
the San Joaquin River. In our study, the San Joaquin River was
parameterized as a losing stream up to Crows Landing, and as a
gaining stream in its lower reaches, according to a recent study by
Traum et al. (2014). It should be noted that representing the surface
water and groundwater interaction with a constant factor is
admittedly an oversimplification of the real situation, as the status
(loss or gain) of a particular reach changes with the variation in
flow, groundwater levels, climatic conditions, and other factors
(Faunt, 2009; Traum et al., 2014).

Performance ratings show that SWAT was able to simulate
monthly streamflow with reasonable accuracy, especially at sta-
tions near the watershed outlet (Table 5 and Fig. 2). Similarly, the P-
factor increased as the flow traveled downstream. A possible
explanation is that the uncertainties associated with flow predic-
tion were balanced out as they propagated downstream (Piniewski
and Okruszko, 2011). Consequently, the hydrograph was much
smoother and easier for SWAT to capture. For the ephemeral creeks
on thewestern side, the timing of themonthly peaks fit in generally
quite well, indicating that SWAT was able to simulate rainfall-
induced runoff during the winter season. However, the perfor-
mance ratings were “unsatisfactory” based on all metrics. This
could be attributed to the transient nature of these small rivers in
response to local rainfall. Moreover, discrepancies might also result
from the lack of data on actual irrigation and water management
practices (Luo et al., 2008).

Underestimation of peak flow was observed at stations along
the San Joaquin River. In fact, SWAT has been repeatedly reported to
underestimate peak flow during extreme events (Feyereisen et al.,
2007; Gassman et al., 2014; Zeiger and Hubbart, 2016; Zhou et al.,
2014). This problem might be inherent in the model structure.
Kim and Lee (2010) found that peak streamflow was under-
estimated using the SWAT built-in Muskingum routing method,
and the prediction was improved by using a newly-developed
nonlinear storage routing method (Kim and Lee, 2010; Kim et al.,
2010). This method was tested in a watershed located in South
Korea though it has not been incorporated into SWAT 2012.

4.2. Simulation of sediment

Results show that the more physically based CH_EQN-1 model
outperformed the default CH_EQN-0 model (Fig. 3). The CH_EQN-
0 model assumes unlimited sediment supply from channel
erosion and that erosion is only dependent on sediment transport
capacity. If the incoming load is less than the transport capacity,
then channel erosion is assumed to meet this deficit. In CH_EQN-1,
sediment supply from channel erosion is no longer unlimited.
Given sufficient transport capacity, erosion only occurs when the
shear stress on the bed and/or bank is more than the critical shear
stress needed to dislodge the sediment particle (Neitsch et al.,
2011). Consequently, CH_EQN-1 predicted less sediment yield
(42% of the amount predicted by CH-EQN-0) and better match to
observations.

Sediment simulation was judged as at least “satisfactory” based
on two PMs during both calibration and validation periods. The P-
factor was lower while the R-factor was higher compared to
streamflow. The greater uncertainty associated with sediment
simulation might result from the lack of knowledge about actual
agricultural management practices that impact erosion and sedi-
ment transport. Most of the data missing the 95PPU were from the
small loads, which was also observed in previous studies
(Abbaspour et al., 2007; Ficklin et al., 2013). This could be attributed
to the model's deficiencies in the groundwater component (Ficklin
et al., 2013). On the other hand, the peak sediment discharge was
overestimated despite the underestimation of peak streamflow
(Figs. 2h and 3b). This might be due to SWAT's inability to represent
the “second-storm” effect, which means that it is more difficult to
mobilize sediment particles after a storm event, since there is less
sediment available and the remaining surface layer is more stable
(Abbaspour et al., 2007). As this phenomenon is not considered in
SWAT, the model is likely to overpredict sediment load during the
second and subsequent events.

4.3. Simulation of pesticide

The most sensitive pesticide parameters were AP_EF, PERCOP,
and HLIFE_S (Table 3). By increasing AP_EF and PERCOP, more
pesticide mass is input to the system and partitioned into surface
runoff and lateral flow. HLIFE_S governs the decay rate of pesticide
in the soil. As this value increases, the degradation process is slower
and hence more pesticide is available for subsequent runoff events.
Pesticide fate and behavior are also related to the soil adsorption
coefficient (SKOC) which defines the partitioning of pesticide be-
tween soluble and sorbed phases. This parameter was found to be
insensitive in our study. One possible explanation is that SKOC has
dual impacts on the dissolved load of pesticide. A lower SKOC value
partitions more pesticide into the soluble phase while accelerates
pesticide migration to groundwater via leaching so that less
pesticide is retained on the top soil for subsequent runoff events.
Consequently, these two impacts could have been neutralized,
resulting in overall low sensitivity of SKOC.

For pesticide simulation, it is of utmost importance that hy-
drology is well calibrated (Holvoet et al., 2005; Luo et al., 2008). In
this study, pesticide calibration was based on the well calibrated
parameters for streamflow and sediment, which contributed to the
“good” performance ratings of pesticide simulation (Table 5). In
addition, the spatial and temporal distribution of pesticide appli-
cation proved to be a key factor for appropriate modeling results,
and was often estimated because the exact location and date of
application are often unknown (Bannwarth et al., 2014; Boithias
et al., 2011; Fohrer et al., 2014; Vazquez-Amabile et al., 2006). In
this study, the PUR system in California provides us with reliable
pesticide use record at 1.0 � 1.0 mi spatial resolution and hourly
time steps, resulting in less uncertainty in the input data.

Even with satisfactory performance ratings, it remains a chal-
lenge to fully capture the variation in diuron loads (Table 5 and
Fig. 4). This could be partially explained by the uncertainty in the
monitoring data. Monthly diuron monitoring data were aggregated
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from grab samples taken every 2e3 weeks. Those limited and
intermittent sampling data might not be representative of pesticide
yield during the entire month (Luo et al., 2008) and could have
failed to capture the simulated peaks. Expanding the parameter
ranges beyond the constraints may increase the P-factor, but may
also result in unrealistic model parameterization (Abbaspour et al.,
2007).

Pesticide fate and transport at the watershed scale strongly
depends on pesticide physiochemical properties, agricultural
management practices, and environmental conditions (Bannwarth
et al., 2014; Ficklin et al., 2013; Fohrer et al., 2014; Gassman et al.,
2014; Holvoet et al., 2005; Larose et al., 2007; Larson et al., 1997;
Luo et al., 2008). Diuron has a low tendency to adsorb to soils
and sediment and is predominantly transported via the water
phase. Therefore, the occurrence of diuron in surface water was
significantly correlatedwith precipitation and streamflow (Table 6).
Significant strong correlations were found between the observed
diuron load and the one-month and two-month antecedent use.
This is probably due to the relatively long hydrolysis and aqueous
photolysis half-lives of diuron (Moncada, 2004). On the other hand,
the model predicted weaker association between load and ante-
cedent use. This could be attributed to the overestimation of diuron
transport in surface runoff and leachate during the first several
events. It is likely that the curve number method for runoff gen-
eration, the storage routing method for soil water movement and
the simplified groundwater component of SWAT have limitations in
representing the mechanism of pesticide transport to surface water
(Boithias et al., 2011; Fohrer et al., 2014). Further improvements in
these algorithms should be investigated. However, even with some
deficiencies, SWAT is still able to reasonably simulate pesticide load
during the calibration period in our study and also during the
validation periods in many others (Bannwarth et al., 2014; Ficklin
et al., 2013; Larose et al., 2007; Luo et al., 2008).

According to model simulation, about 0.95% of the applied
diuron was exported at the watershed outlet. This result was in
agreement with previous studies, where the reported loss ranged
from 0.05 to 1.6% for pesticides with properties similar to diuron
(Boithias et al., 2011; Jaynes et al., 1999). The majority of diuron
loads (>70%) were exported during major peaks, which could be up
to 239 kg per month. Most of the peaks occurred during the winter
months (December to February), when the current biological con-
trol agents of water hyacinth, and potential future agents of other
aquatic weeds, are in quiescent life stages awaiting warming tem-
peratures and new weed growth in late spring and summer. This
timing will likely limit direct exposure of biocontrol agents to
agricultural diuron runoff. Nevertheless, diuron is relatively
persistent in aquatic system, therefore posing a potential threat in
the warm season. The fate and transport of diuronwithin the Delta
waterways requires further modeling efforts. Moreover, experi-
mental determination of plant uptake of diuron and the associated
impacts on the ability of insect biocontrol agents to damage aquatic
weeds, should be topics for additional studies. Results from this
study could also inform the design of monitoring programs. Under
current climate conditions and diuron use patterns, the diuron
monitoring program in the San Joaquin watershed should perform
intense sampling fromDecember to February, when peak loading of
diuron occurs.

4.4. Conflicting performance ratings

Conflicting performance ratings were observed in this study. For
instance, sediment simulation was judged as at least “satisfactory”
based on two metrics but “unsatisfactory” based on the other
(Table 5). This could be explained by the fact that each of the
metrics captures a distinct aspect of model performance. R2
quantifies the degree of linear correlation, NSE assesses how well
the model-to-data plot fits the 1:1 line, while PBIAS is sensitive to
systematic error. Therefore, the results indicate that the goodness-
of-fit of SWAT varies across those aspects. It should be mentioned
that in our study, PBIAS generated mostly lower ratings compared
to R2 and NSE (Table 5). This is probably due to the choice of f as the
objective function, which does not account for systematic over- and
underestimation. It might be helpful to combine different
(weighted) criteria into one overall objective function (Dai et al.,
2010). However, this functionality is not supported in SWAT-CUP
currently.

4.5. Sources of uncertainty

At thewatershed scale, hydrologic modeling is often challenging
due to the uncertainties in the large number of input data, spatial
and temporal heterogeneity of parameters, and processes not
represented in the models (Ficklin et al., 2013; Guzman et al., 2015;
Schuol et al., 2008a). Inadequate land use representation is a po-
tential uncertainty source in this study, as temporally varying land
use were considered as constant throughout the simulation
(Baffaut et al., 2015; White and Chaubey, 2005). However, sta-
tionary land use maps are commonly used in watershed-scale hy-
drologic modeling, because updating land use maps would require
redefining HRUs and associated parameter values, which could
significantly increase the complexity of the modeling process. The
contribution of uncertainty in monitoring data has been recently
emphasized (Bieger et al., 2014; Guzman et al., 2015; Panagopoulos
et al., 2011), and efforts have been made to estimate uncertainty in
discharge, sediment, nitrogen and phosphorus data (Harmel et al.,
2009, 2014; Harmel and Smith, 2007; Harmel et al., 2014). How-
ever, quantifying uncertainties in measured values remains a
demanding task, and transformation and/or aggregation of the
monitored data could introduce additional uncertainties.

Model parameterization is another source of uncertainty. Often,
the user's subjective judgement is involved in model parameteri-
zation. On the other hand, the knowledge of the model user is
critical during parameterization (Abbaspour et al., 2015; Arnold
et al., 2015b; Malone et al., 2015). Therefore, proper documenta-
tion and reporting of the modeling processes is important and in-
creases the scientific credibility of results (Dharmendra et al., 2015;
Moriasi et al., 2015b). In this study, ranges of each parameter
adjusted during calibration were presented, and calibration and
validation strategies were elaborated. It is believed that standard-
ized reporting will help form the basis for future studies that
simulate hydrology and flow-transported constituents such as
sediment and pesticide (Arnold et al., 2012).

5. Conclusion

In this study, hydrologic modeling of streamflow, sediment, and
pesticide diuronwas performed in the San Joaquinwatershed using
SWAT. We found that regionalization of parameters was important
as the dominant processes and sensitivity of associated parameters
varied spatially. Streamflow of the San Joaquin River was most
sensitive to channel parameters while streamflow of the western
tributaries was mainly influenced by landscape parameters. Diuron
simulation was rated as “good” by all PMs based on standardized
PEC, benefiting from the “satisfactory” simulation of streamflow
and sediment as well as the high-resolution PUR database. Signif-
icant correlations were observed between diuron load, and pre-
cipitation, streamflow and pesticide use. Compared to the
simulated diuron load, the observed diuron load was more corre-
lated with the antecedent diuron use, suggesting that SWAT might
overestimate pesticide transport in surface runoff and leachate
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during the first several events. Uncertainty sources in this study
include lack of knowledge about actual agricultural management
practices, inadequate representations of land use, and pesticide
monitoring data. We found that the majority of diuron transport
(>70%) occurred during winter months, when the current biocon-
trol agents are in the state of dormancy. This timing limits direct
exposure of biocontrol agents to agricultural diuron runoff,
whereas exposure in the dry season could be a concern given the
persistence of diuron in aquatic system. This study is expected to
facilitate the advancement in large-scale water quality modeling, as
well as in our understanding of diuron transport into the Delta
region, potentially informing biological weed control planning.
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