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Vegetated Filter Strips (VFS's) arewidely used for alleviating agricultural pesticide loadings to surfacewater bod-
ies. However, effective tools are lacking to quantify the performance of VFS's in reducing off-site pesticide trans-
port. In this study, we applied meta-regression to develop a model for predicting VFS pesticide retention
efficiency based on hydrologic responses of VFS's, incoming pollutant characteristics and the interaction within
and between these two factor groups (R2=0.83). In cross-validation analysis, our model (Q2=0.81)
outperformed the existing pesticide retention module of VFSMOD (Q2=0.72) by explicitly accounting for inter-
action effect and the categorical effect of pesticide adsorption properties. Based on the 181 data points studied,
infiltration had a leading, positive influence onpesticide retention, followedby sedimentation and interaction be-
tween the two. Interaction between infiltration and pesticide adsorption properties was also prominent, as the
influence of infiltration was significantly lower for strongly adsorbed pesticides. In addition, the clay content of
incoming sediment was negatively associated with pesticide retention. Our model is not only valuable in
predicting VFS performance, but also provides a quantitative characterization of the interacting VFS processes,
thereby facilitating a deeper understanding of the underlying mechanisms.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The use of pesticides to manage pest infestation has been a common
agricultural practice worldwide for decades. From 2005 to 2009, over
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6.5 billion kg of pesticides were applied annually on global agricultural
lands (FAO, 2015). Off-site movement of pesticides into surface water
bodies was observed, and in many cases, pesticides were detected at
concentrations exceeding water-quality criteria, thus posing severe
threats to aquatic organisms and human health (Reichenberger et al.,
2007; Zhang and Goodhue, 2010). In California's Central Valley, for in-
stance, pesticides residues are routinely detected in surface water at
concentrations exceeding US EPA Aquatic Life Benchmarks (Starner
and Zhang, 2011). Surface runoff is one of the primary pathways by
which pesticides are transported. Edge-of-field losses of pesticides car-
ried by surface runoff can bemore than 10% of the amount of pesticides
applied when severe rainfall occurs soon after pesticide application
(Schulz, 2004). In order to ensure surface water quality, growers and
regulators need to develop effective mitigation plans to reduce off-site
transport of pesticides from croplands.

Vegetated filter strips (VFS's) are a best management practice for al-
leviating agricultural pesticide loadings to surfacewater bodies (FOCUS,
2007; USDA-NRCS, 2013; USDA-NRCS, 2015; USEPA, 2002). They are
strip(s) of vegetation typically placed at the lower edge of a field to in-
tercept surface runoff. As runoff passes through a VFS system, the erect
vegetation stems pose an abrupt increase in hydraulic resistance to sur-
face flows. Consequently, the runoff flow velocity is reducedwhich pro-
motes infiltration and decreases the sediment transport capacity of
flow. Sediment deposition occurs when the reduced transport capacity
is less than the inflow sediment loads (Barfield et al., 1979). Pesticides
transported in the dissolved phase are removed from surface runoff
through infiltration into the soil matrix while sediment-bound pesti-
cides settle out of the flowing water through sedimentation. Sorption
to the soil surface, vegetation leaves, stems and residues are also impor-
tant mechanisms for pesticide retention. Pesticides trapped within a
VFS are subject to subsequent degradation,which is enhanced by higher
microbial activities occurring in the presence of perennial vegetation
(Krutz et al., 2005).

VFS's have been implemented across the world for decades, demon-
strating their effectiveness in water quality improvement (Arora et al.,
2010; Krutz et al., 2005; Norris, 1993). However, considerable variation
in VFS pesticide removal efficacywas observed in experimental studies.
In herbicide runoff studies, pesticide removal efficiency of VFS's of two
drainage to buffer area ratio treatments of 15:1 and 30:1 ranged from
8 to 100% under natural rainfall (Arora et al., 1996) and from 47 to
83% in simulated runoff (Arora et al., 2003). For different filter lengths
(the dimension parallel to runoff flow), inflow rates and herbicide con-
centration, herbicide reduction varied between 46 and 92% (Klöppel
et al., 1997). VFS's built with varying vegetation species and lengths re-
moved herbicides and insecticides by 32 to 96% (Schmitt et al., 1999). As
VFS length increased, VFS atrazine removal efficiency increased from 44
to 100% (Patty et al., 1997) and from 31 to 80% (Mickelson et al., 2003),
whereas short VFS's with lengths of 0.5 to 4 m (Tingle et al., 1998) and
3 m (Otto et al., 2012) were effective in removing herbicides by at least
80%. Trapping percentages of herbicides were above 90% for VFS's lo-
cated in a karst watershed with high infiltration capacity (Barfield
et al., 1998), and ranged from 40 to 85% for VFS's constructed on crack-
ing vertisol soils (Popov et al., 2006). Flow concentration reduced VFS's
removal efficacy of chlorpyrifos and atrazine from 85% to 21%, and from
62% to 12%, respectively (Poletika et al., 2009).

Such large variation in VFS performance is mainly attributed to the
multiplicity of processes and factors involved in VFS pesticide removal
(Lacas et al., 2005). Themajor processes that contribute to VFS pesticide
removal have been identified as infiltration, deposition, sorption and
degradation (Krutz et al., 2005; Zhang et al., 2010). The key factors
that influence these processes can be divided into two categories:
(1) properties of a VFS system, such as filter length, slope, soil texture,
structure and antecedent moisture, and vegetation height, density and
species; and (2) properties of pollutant inflow, such as rate and amount
of rainfall and surface runoff, sediment particle size distribution, and the
solubility, hydrophobicity and degradation rate of the pesticides.
Empirical equations have been developed to estimate VFS efficacy
based on filter properties such as length and slope (Neitsch et al.,
2005; Zhang et al., 2010). However, these equations can only include a
limited number of factors and therefore often fail to adequately charac-
terize VFS performance. This limitation has been partially addressed
through an effort to incorporate VFS hydrological responses as explana-
tory variables in calculating the VFS pesticide retention efficiency (%),
ΔP (Sabbagh et al., 2009):

ΔP ¼ 24:79þ 0:54 ΔQð Þ þ 0:52 ΔEð Þ−2:42 ln Fph þ 1
� �

−0:89 Cð Þ

where ΔQ, ΔE, Fph and C represent runoff volume reduction (%), sedi-
ment mass reduction (%), pesticide phase distribution factor (fraction
of dissolved over sediment-bound pesticide mass in inflow) and clay
content of incoming sediment (%), respectively. Recently, this equation
has been integrated into the Vegetated Filter Strips Modeling System
(VFSMOD), a 1-D, field-scale model that routes the incoming runoff
through a VFS and predicts its pollutant trapping efficiency
(Muñoz-Carpena et al., 1999; Muñoz-Carpena and Parsons, 2014). The
hydrologic responses of a VFS system (ΔQ and ΔE) are simulated by
the hydrology and sediment filtration modules of VFSMOD and then
fed into the pesticide retention equation for calculating the final ΔP.

The pesticide module of VFSMOD has shown its potential in
predicting VFS pesticide removal efficacy (Poletika et al., 2009;
Sabbagh et al., 2009; Winchell et al., 2011). However, it has been
found that for strongly adsorbed pesticides, only Fph and ΔE remained
significant whereas for weakly to moderately adsorbed pesticides, ΔQ
was the only significant predictor (Sabbagh et al., 2009). Nevertheless,
the model development team proposed the single empirical equation
as robust for all pesticides. One modification which may improve pre-
dictive accuracy is to replace the continuous variable (Fph) with a cate-
gorical variable to specify the impact of pesticide adsorption
properties, as observed in the literature (Arora et al., 2010; Krutz et al.,
2005; Reichenberger et al., 2007). The original model also excludes in-
teraction between explanatory variables, which has been widely recog-
nized as critical in determining VFS performance. Arora et al. (2010)
concluded from their literature review that the relationships between
ΔQ and ΔE with ΔP were largely dependent on pesticide adsorption
properties. For strongly adsorbed pesticides, ΔP has a relatively strong
association with ΔE while for moderately to weakly adsorbed pesti-
cides, ΔP is mainly dependent on ΔQ (Krutz et al., 2005). Infiltration
also interacts with adsorption/sedimentation processes. Popov et al.
(2006) observed that adsorption/sedimentation played a more impor-
tant role in trapping herbicides at low flow depth. Therefore, by reduc-
ing flow depth, higher ΔQ is likely to lead to stronger associations
between ΔE and ΔP.

Meta-analysis is a powerful statistical method of research synthesis
for creating generalizations from the results of many separate experi-
ments (Koricheva et al., 2013). The goal of this study is to develop a
model to predict VFS pesticide removal efficacy using a meta-
regression approach. Specifically, the objectives include: (1) extracting
and aggregating data from the literature for model development and
validation; (2) testing the significance of pesticide adsorption proper-
ties in explaining variation in VFS pesticide retention; and (3) exploring
interaction among hydrologic processes occurring in VFS and incoming
pollutant characteristics. A set of statistical metrics (adjusted R2,
Mallow's Cp, AICc, BIC, F statistic of general linear test andQ2 of cross val-
idation) were applied to ensure the robustness of the proposed regres-
sion model. This study is the first modeling effort which explicitly and
quantitatively accounts for the impacts of (1) pesticide adsorption cate-
gories, and (2) interactions amongVFS hydrologic processes and incom-
ing pollutant properties on VFS pesticide removal efficacy. The
developed model not only serves as a valuable tool for predicting VFS
performance, but also contributes to a deeper understanding of the
complex, interacting VFS processes and factors responsible for pesticide
retention.
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2. Materials and methods

2.1. Variable selection

In this study, five factors were initially determined as essential for
model development. These include ΔQ (runoff volume reduction, %),
ΔE (sedimentmass reduction, %), C (clay content of incoming sediment,
%), Cat (pesticide category), L (VFS length, m) and the response variable
ΔP (pesticide mass reduction, %). Other VFS construction parameters,
such as slope and soil texture, were not included in this analysis since
(1) they are partially incorporated in VFS hydrologic responses (ΔQ
and ΔE), and (2) we tried to limit the number of variables used for
VFS performance prediction. Reduction was calculated as the difference
between the inflow and outflow quantities divided by the inflow quan-
tity. Pesticides were divided into two categories (Sabbagh et al., 2009):
strongly adsorbed (KocN9000ml/g) andweakly tomoderately adsorbed
pesticides (Koc≤9000 ml/g). The general framework of the model
serves as a critical basis for developing literature selection criteria.
2.2. Literature review and data extraction

Eight studies published through 2007 were taken from a previous
review of this topic (Sabbagh et al., 2009). A systematic literature re-
viewwas conducted to findmore recent studies using the following sci-
entific databases and web search engine: Melvyl, Scopus, Web of
Science and Google scholar. Abstract-based relevance screening was
first applied using the following keywords: vegetated filter strip or veg-
etated buffer, pesticide, and runoff. The selected studies were further
screened to exclude studies that contained insufficient information on
the variables of interest (i.e. ΔQ, ΔE, C, Cat, L, ΔP). Finally, a total of 16
studies that satisfied our screening criteria were included in this
meta-analysis, 8 studies from Sabbagh et al. (2009) and the other 8
studies selected in our review (Table 1). These studies were carefully
examined to record the quantities or levels of ΔQ, ΔE, C, Cat, L and ΔP
and other general information such as author, year, location, pesticide
chemical, soil type and vegetation species. A total of 181 data points
were collected for the subsequent analyses. The study areas of the com-
piled data set encompassed the middle and eastern USA, western and
central Europe, and Australia.
Table 1
Summary of the experimental studies used for development and evaluation of the VFS pesticid

Study Location VFS length (m) Pesticide chemical

Arora et al. (2003) IA, USA 20.1 Atrazine, metolachlor, chlorpyrifos
Arora et al. (1996) IA, USA 20.1 Atrazine, metolachlor, cyanazine

Barfield et al. (1998) KY, USA 4.6, 9.1, 13.7 Atrazine
Boyd et al. (2003) IA, USA 20.1 Atrazine, acetochlor, chlorpyrifos

Klöppel et al. (1997) Germany 10, 20, 15 Terbuthylazine, isoproturon,
dichlorprop-p

Mersie et al. (1999) VA, USA 2 Atrazine, metolachlor
Mickelson et al. (2003) IA, USA 4.6, 9.1 Atrazine
Misra et al (1996) IA, USA 12.2 Atrazine, metolachlor, cyanazine
Patty et al. (1997) France 6, 12, 18 Lindane, atrazine, isoproturon,

diflufenican
Pätzold et al (2007) Germany 6, 12 Metolachlor, terbuthylazine,

pendimethalin
Poletika et al. (2009) IA, USA 4.6 Atrazine, chlorpyrifos

Popov et al. (2006) Australia 4 Atrazine, metolachlor
Rankins et al (2001) MS, USA 0.3 Fluometuron, norflurazon

Schmitt et al. (1999) NE, USA 7.5, 15 Atrazine, alachlor, permethrin

Seybold et al. (2001) VA, USA 3 Atrazine, metolachlor
Tingle et al. (1998) MS, USA 0.5, 1, 2, 3, 4 Metolachlor, metribuzin
2.3. Data set characteristics

Table 2 summarizes the continuous variables included in the full
model. Great variation was observed in VFS removal efficiency of
water (ΔQ), sediment (ΔE) and pesticides (ΔP), which ranged from 0
to 100%. The clay content of the incoming sediment (which approxi-
mates the clay content of soil in the upslope source area) varied be-
tween 6 and 45%, encompassing the common range for agricultural
soil. The maximum length of VFS (L) recorded was 20.1 m, which was
less than the 30-m optimal length reported by Zhang et al. (2010).
Based on our study data, however, ΔP was substantially negatively
skewed and 100% pesticide reduction was frequently observed
(Table 2). In other words, although less than 30 m, the VFS's included
in our data set were able to achieve considerable pesticide reduction
in many cases, making the applicability domain of our model large
enough for practical use.
2.4. Statistical analysis

Data extracted from the selected studieswere analyzed using a set of
statistical procedures. Distributions and relationships among variables
were visually inspected using scatterplot matrix. Box-and-whisker
plot was created to examine the distribution of ΔP by pesticide cate-
gory. As ΔP is not normally distributed, the non-parametric Mann–
Whitney U test was applied to compare the differences in the mean
ranks between strongly and weakly to moderately adsorbed pesticides
at significance level of 0.01.

Meta-regression is essentially multiple regression but applied to in-
vestigate the effects of explanatory variables across different studies
(Borenstein and Wiley, 2009). This approach is frequently used in
meta-analysis. In this study,meta-regressionwas conducted to examine
the relationships between VFS pesticide removal efficacy and the ex-
planatory variables. Initially we planned to apply a mixed effect model
that incorporates random effects to account for heterogeneity across
studies (Chow, 2013). However, most studies did not have replications
or did not report within-study variation, making it impossible to accu-
rately estimate between-study variation. Therefore, a fixed effect
model was employed in this study. As the distribution of ΔPwas nega-
tively skewed, reflection and square root transform was applied
e retention model.

Soil type Vegetation species Sample size

Loam Brome grass, blue grass 6
Silty clay
loam

Smooth brome grass 6

Silt loam Bluegrass and fescue sod 12
Silty clay
loam

Brome 6

Silt loam Grass 21

Sandy loam Switchgrass 2
Sandy loam Brome, Kentucky bluegrass 4
Loam – 12
Silt loam Rye grass 18

Silt loam Pasture 42

Silty clay
loam

Brome 8

Clay Wallaby grass 12
Silty clay Big bluestem, eastern gamagrass, switchgrass, tall

fescue
8

Silty clay
loam

25-yr-old mixed grass, 2-yr old switchgrass and
tall fescue

12

Clay loam Switchgrass 2
Silty clay Tall fescue 10



Table 2
Statistical summary of the continuous variables included in the full model (ΔQ, runoff vol-
ume reduction;ΔE, sedimentmass reduction; C, clay content of incoming sediment; L, VFS
length; ΔP, pesticide mass reduction).

ΔQ (%) ΔE (%) C (%) L (m) ΔP (%)

Minimal 0.0 0.0 6 0.3 6.7
First quartile 51.2 66.4 20 4.6 68.0
Median 75.0 91.3 25 10.0 89.0
Mean 71.0 71.9 27 9.8 79.4
Third quartile 93.2 99.6 30 12.2 100
Maximum 100 100 45 20.1 100
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(Tabachnick and Fidell, 2007):

ΔPt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max ΔPð Þ þ 1−ΔP

p
:

The essence ofmodel development is to strike a balance between the
precision of the fit and the number of parameters/variables used to ob-
tain the fit. Although adding variables is likely to improve fitting to the
training data set, it could also lead to overfitting which occurs when a
model describes random error instead of themean response. Therefore,
model adequacy indicators (adjusted R2, Mallow's Cp, AICc, BIC and gen-
eral linear test) were applied for selecting themost parsimonious set of
model variables (Table 3). Both adjusted R2 and Mallow's Cp are tech-
niques for model selection in regression analysis. Adjusted R2 is calcu-
lated by adjusting R2 for the loss of degrees of freedom (Theil, 1961).
It is generally considered as a quick and easymethod formodel compar-
ison. Mallow's Cp is an estimate of the standardizedmean squared error
(MSE) of the ordinary least squares estimator b=(X 'X)-1(X 'Y)
(Mallows, 1973). The optimal subset of predictors is selected with con-
siderations of sample size, effect sizes of predictors, and the degree of
collinearity. Both the Akaike's Information Criteria (AIC) and the Bayes-
ian Information Criteria (BIC) are penalized-likelihood criteria formodel
selection. As an information-theoretic metric, AIC selects themodel that
minimizes the expected, relative Kullback–Leibler information loss, and
is useful in selecting the best model among all competing models
(Burnham and Anderson, 2002; Burnham and Anderson, 2004). Its
corrected version, AICc, is introduced to adjust for small sample size
(Burnham and Anderson, 2004). BIC is calculated by maximizing the
posterior probabilities of alternative models, given the observations
(Irizarry, 2001). BIC places heavier penalty on models with many vari-
ables, resulting in smaller models than Mallow's Cp and AIC (James
et al., 2014). General linear test using F statistic is another frequently
used approach for model selection. It can be applied to test whether at
least one of the extra variables included in the full model is useful for
prediction (Jennings, 2015). The full model included all of the variables
Table 3
Summary of indicators and criteria used for model selection.

Model adequacy indicator Criterion

Ra
2 ¼ 1− MSE

SSTotal
n−1

Proximity to unity

Cp ¼ SSEp
MSE F

þ 2p−n Low Cp that is close to p;
Large difference in Cp between the two best models
for a given number of variables

AIC ¼ n� ; lnðSSEpn Þ þ 2p

AICc ¼ AIC þ 2 � p � pþ1
n−p−1

Lowest value

BIC ¼ n� ; lnðSSEpn Þ þ p� ; lnðnÞ Lowest value

F ¼
ΔSSE
Δdfe

MSE F
¼

SSER−SSE F
df eR−df e F
MSE F

H0: reduced model; Ha: full model; α = 0.05

Note: SSE, dfe, MSE, SSTotal and n are the sum of squared errors, degree of freedom for
error,mean squared error, total sumof squares and sample size of the regression equation,
and subscripts R, F and p denote the reduced model, full model and model with p
regressors.
and first-order interactions:

Fullmodel : ΔPt ¼ f ΔQ ;ΔE;C;Cat; Lð Þ:

Exhaustive search algorithm was applied to extract all possible regres-
sions reduced from the full model. These reduced models were then
assessed using model adequacy indicators.

After the identification of the best model, statistical diagnostic tests
were applied to determine whether all the necessary model assump-
tions were valid before performing inference. A Q–Q plot of residuals,
a histogram of residuals and plots of residuals vs. fitted values and ex-
planatory variables were used to examine the normality and constant
variance assumptions. Partial regression plots (also known as “added
variable plots”)were applied to check the assumption of linearity. In ad-
dition, Cook's distances were compared to the F-distribution to identify
influential observations that might distort the outcome and accuracy of
a regression. The variance inflation factor (VIF) was employed to assess
the degree of multicollinearity between explanatory variables. For
model validation, we could not split the data set into independent train-
ing and validation data sets as there were only 33 data points for
strongly adsorbed pesticides. Therefore, six-fold cross validation was
performed by first randomly dividing the sample into six groups and
calculating the average statistic from regressing five groups to estimate
the remaining one group (James et al., 2014). The statistic used to rep-
resent model predictive ability was the predictive squared correlation
coefficient Q2 (Consonni et al., 2009; Consonni et al., 2010):

Q2 ¼ 1−
XnVAL

i¼1

ŷi−yiÞ
2
=nVALXnTR

i¼1
yi−yTRð Þ2=nTR

0
@

where ŷi, yi and nVAL in the numerator are the ith prediction, observation
and sample size of the validation data set, and yi, yTR and nTR in the de-
nominator are the ith observation, mean observation and sample size
of the training data set. Q2 can be considered as analogous to R2 with
values near one being desirable. Cross validation was performed 50
times using the data set complied in this study and the average values
of Q2 were recorded for both the developed model and the current
VFSMOD pesticide module.

The effect display concept was applied for interpreting and
displaying the main effects and interactions among predictors (Fox,
2003). This method is most useful when a complex model structure is
under consideration (i.e. polynomial term and/or interaction term in
presence). The general procedure is to combine high-order terms with
their lower-order relatives (in our case, main effects marginal to an in-
teraction) and allow the predictors appearing in the high-order terms to
vary over all possible values, with other predictors fixed atmean values.
All the statistical analyses and data visualization were performed in R, a
free and versatile software environment for scientific computation (R
Development Core Team, 2015).

3. Results

3.1. Distributions and relationships among variables

The distributions and relationships among ΔQ, ΔE, C, L and ΔP are
displayed in Fig. 1. As noted above, ΔQ, ΔE and ΔP were negatively
skewed, and the skewness of ΔP was largely alleviated after reflection
and square root transform. ΔQ showed a strong, positive, linear impact
onΔP, while the isolated effects ofΔE, C, and Lwere not prominent. Dis-
tributions of VFS pesticide removal efficacy are shown in Fig. 2, grouped
by pesticide category. In this study, there were 33 and 148 data points
for strongly andweakly tomoderately adsorbedpesticides, respectively.
Results from Mann–Whitney U test indicated that VFS pesticide re-
moval efficiency was significantly higher for strongly adsorbed pesti-
cides than for weakly to moderately adsorbed pesticides, as



Fig. 2. Pesticide removal effectiveness of VFS by pesticide category. The central rectangle
spans the first to the third quartile. The upper/lower whisker extends to the highest/
lowest value that is within 1.5 ∗ inter-quartile range. The mean ranks of pesticide groups
differ significantly, as denoted by different letters (Mann–Whitney U test on ranks, P =
0.008).

126 H. Chen et al. / Science of the Total Environment 548–549 (2016) 122–130
documented in previous studies (Arora et al., 2010; Krutz et al., 2005;
Reichenberger et al., 2007).

3.2. Model development and evaluation

The relationships between model adequacy and the number of pre-
dictors are shown in Fig. 3. Both Mallow's Cp and BIC suggested the
model with 6 predictors was optimal, whereas adjusted R2 and AICc in-
dicated the models with 12 and 9 predictors, respectively, were pre-
ferred. However, the model with 6 predictors was chosen at this step
as adjusted R2 and AICc gradually stabilize at the model size of 6. In ad-
dition, the model of smaller size was preferred as we hoped to limit the
number of predictors in order to reduce the degree of collinearity. After
applying the general linear test using the F statistic and further adjust-
ment based on diagnostic tests, the final model was developed
(Table 4).

In this study, VFS length was not a significant factor in explaining
variation in VFS pesticide removal efficacy. Therefore, it was excluded
from the final model. The overall goodness-of-fit was satisfactory,
with R2 of 0.83, P-value less than 0.001 (Table 4) and points aligned
with the 1:1 line in the scatterplot of model predictions vs. observations
(Fig. 4). The result of the six-fold cross validation is illustrated in Fig. 5.
In general, the model fitted through cross validation performed equally
well as the model fitted using the whole data set, although there was
slightly more discrepancy betweenmodel predictions and observations
(Fig. 5). Our final model obtained an average Q2 of 0.81, whereas the
current VFSMOD pesticidemodule only attained a value of 0.72. Similar
to R2, Q2 calculates the proportion of variation (in the validation data
set) that the model (with parameters estimated from the training data
set) is able to explain. In most environmental studies, a R2 (therefore
Fig. 1. Distributions and relationships among ΔQ (runoff volume reduction, %), ΔE (sedimen
(pesticide mass reduction, %) with Pearson correlation coefficients, color coded by pesticid
respectively). (For interpretation of the references to color in this figure legend, the reader is r
Q2) value greater than 0.5 is considered desirable (Chinkuyu et al.,
2004). Although the predictive powers of both models are within the
acceptable range, the major advance in our study is that we demon-
strated and quantified the importance of interacting VFS processes in
explaining VFS performance, which is presented in the next section.
t mass reduction, %), C (clay content of incoming sediment, %), L (VFS length, m) and ΔP
e category (red and blue for weakly to moderately and strongly adsorbed pesticides,
eferred to the web version of this article.)



Fig. 3. Relationships between model adequacy and size for a) adjusted R2, b) Mallow's Cp and c) AICc and BIC for the best or top three models of each size. The optimal model sizes are
marked by solid circles.
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3.3. Main effects and interaction

Fig. 6 shows the significant main effects and interaction among pre-
dictors in explaining variation inΔP, plotted at different scales for better
visualization of the patterns.ΔQwas strongly, positively correlatedwith
ΔP, and the degree of correlationwas stronger forweakly tomoderately
adsorbed pesticides. The predicted ΔP for strongly adsorbed pesticides
was always higher than that for weakly to moderately adsorbed pesti-
cides. The influence of ΔE on ΔP was quite small at low levels of ΔQ
(50–60%), but gradually increased as ΔQ increased (70–100%). How-
ever, even the maximal impact of ΔE on ΔP was much smaller com-
pared with that of ΔQ. The last graph in the panel shows the negative
correlation between C and ΔP, with the strength of the main effect fall-
ing between that of ΔQ and ΔE.
4. Discussion

In agreement with previous studies, this study found the categorical
influence of pesticide adsorption properties on VFS performance (Arora
et al., 2010; Krutz et al., 2005; Reichenberger et al., 2007). By replacing
Fphwith pesticide category, themodel structure is more consistent with
the established theory, thereby facilitating the investigation of the inter-
action between pesticide category and the hydrologic response of a VFS
system. In addition tomodel structure, ourmodel is likely to outperform
the current VFSMOD pesticide module in terms of the rigorous
Table 4
Summary of the developed pesticide retention model (ΔQ, runoff volume reduction; ΔE,
sediment mass reduction; C, clay content of incoming sediment; Cat, pesticide category;
ΔP, pesticide mass reduction).

Coefficient Standard error P-value 95% confidence interval

Equation:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101−ΔP

p
� ΔQ þ ΔE þ C þ Cat þ ΔQ : Cat þ ΔQ : ΔE

Lower limit Upper limit

(Intercept) 8.06 0.45 b0.001 7.17 8.95
ΔQ −0.07 0.01 b0.001 −0.08 −0.05
ΔE 0.02 0.01 0.012 0.003 0.028
C 0.05 0.01 b0.001 0.03 0.07
Cat −2.17 0.58 b0.001 −3.32 −1.03
ΔQ :Cat 0.02 0.01 0.009 0.01 0.03
ΔQ :ΔE −0.0003 0.00008 b0.001 −0.0005 −0.0001
Sample size 181 R squared 0.83 F statistic Pb0.001
statistical procedure that has been carried out. As seen earlier, the distri-
bution of ΔP was substantially negatively skewed (Fig. 1). When we
regressed ΔP without transformation, the resulting plots of residuals
vs.fitted values and explanatory variables showed a clear sign of hetero-
geneity of variance. Such heterogeneity was reduced considerably after
transformingΔP. Therefore, themodel developedwithout proper trans-
formation ofΔP is questionable formaking inferences. This is the case of
the current VFSMOD pesticide module which was developed on the
basis of highly negatively skewed ΔP. This factor may partially explain
why our model has greater predictive power, as shown in the cross val-
idation test and statistic Q2 (Fig. 5).

Infiltration of runoff water within VFS's has been identified as one of
the major mechanisms responsible for pesticide retention. Infiltration
substantially reduced the mass of moderately adsorbed pesticides
exiting VFS's (Boyd et al., 2003; Klöppel et al., 1997; Schmitt et al.,
1999), especially when runoff almost totally infiltrated within VFS's
due to small rainfall amounts (Arora et al., 1996) and/or high infiltration
capacity of soils (Barfield et al., 1998; Popov et al., 2006). By reducing
Fig. 4. Multi-linear regression between the predicted and observed pesticide removal
efficiency of VFS, by study cases.



Fig. 5. Six-fold cross validation results for the final model. Only one out of 50 simulation
results was selected for illustration. The average Q2 is 0.81 and 0.72 for our model and
the current VFSMOD pesticide module, respectively.
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flow depth, infiltration also facilitates sedimentation by decreasing the
sediment transport capacity of the remaining runoff flow (Dosskey,
2001), therefore promoting the removal of sediment-bound pesticides.
Some studies have found that a large proportion of variation inΔP could
be explained by ΔQ, which is governed by the hydrologic conditions
(e.g. soil hydraulic conductivity, initial soil moisture content, degree of
flow concentration) of a VFS system (Barfield et al., 1998; Dillaha and
Reneau, 1989; Fox et al., 2010; Klöppel et al., 1997; Krutz et al., 2003;
Lacas et al., 2005; Muñoz-Carpena et al., 2010; Popov et al., 2006). The
model developed here predicted higher ΔP for strongly adsorbed pesti-
cides than for weakly to moderately adsorbed pesticides (Fig. 3a). Such
a trend was expected due to different VFS performance in reducing the
two carrier phases of pesticides—the water and sediment flow. It is
widely acknowledged that the retention of sediment by VFS is greater
than that of water. Therefore, the removal efficacy of strongly adsorbed
pesticides is likely to be greater than theweakly tomoderately adsorbed
pesticides, as a larger proportion of pesticides in the former category are
transported in the sediment phase (Krutz et al., 2005; Reichenberger
et al., 2007).
Fig. 6. Relationships between a)ΔP andΔQ as affected by pesticide category, b)ΔP andΔE as a
(%), runoff volume reduction (%), sediment mass reduction (%) and clay content of incoming s
In an uncertainty analysis study, Muñoz-Carpena et al. (2010) ob-
served that the distribution of ΔP fell between the distributions of ΔQ
and ΔE, and would shift to that of ΔQ for weakly to moderately
adsorbed pesticides while it would shift to the distribution of ΔE for
strongly adsorbed pesticides. In our study, there was no significant in-
teraction between ΔE and pesticide category. However, we did observe
interaction betweenΔQ and pesticide category. The impact ofΔQ onΔP
was stronger for weakly to moderately adsorbed pesticides (Fig. 3a). As
infiltration removes dissolved pesticides from surface runoff directly by
diverting part of water flow into the soil matrix (Boyd et al., 2003;
Dosskey, 2001; Schmitt et al., 1999; Zhang et al., 2010), the impact of
ΔQ is stronger for pesticides that are mainly transported in the dis-
solved phase. For strongly adsorbed pesticides, the impact of ΔQ on
ΔP is not as strong, as smaller proportions of the strongly adsorbed pes-
ticides are transported in the water phase compared with weakly to
strongly adsorbed pesticides.

ΔEwas positively correlatedwithΔP (Fig. 3b). Asmentioned earlier,
sedimentation is an important process for pesticide retention, especially
for strongly adsorbed pesticides which have a higher concentration in
sediment than in water flow (Arora et al., 2010). However, the overall
impact of sedimentation might be small when compared with infiltra-
tion, as the volumetric flow rate is likely to be higher than the volumet-
ric sediment discharge rate by several orders of magnitude. As a result,
greater amounts of pesticides are transported in the dissolved phase
than the sediment phase of surface runoff (Krutz et al., 2005), reducing
the impact of ΔE on ΔP. For a given level of ΔE, ΔP increased with in-
creasing ΔQ (Fig. 3b). This is mainly due to the fact that water and sed-
iment flow are the two major carrier phases for pesticide transport in a
VFS system (Arora et al., 2010). Therefore, total pesticide removal effi-
cacy is determined by the reduction in both carrier phases collectively.
Interaction between ΔQ and ΔE was also observed in this study, as
the influence of ΔE on ΔP gradually increased with ΔQ (Fig. 3b). A pos-
sible explanation might be that high infiltration volume decreases run-
off flow depth to a greater extent, providing more opportunities for
contact between pesticide and sediment. Lower flow depth also facili-
tates adsorption/sedimentation by decreasing flow velocity and in-
creasing retention time in the VFS (Popov et al., 2006). Consequently,
a higher proportion of pesticides would be transported in the solid-
phase and settle out of runoff flow with sediment particles.

Several studies have found that particle size distribution of incoming
sediment strongly influences VFS sediment trapping performance
(Barfield et al., 1979; Dosskey, 2001; Krutz et al., 2005; Lacas et al.,
2005; Muñoz-Carpena et al., 2010; Norris, 1993). Sediment from
coarse-textured soils could be easily removed within the first few
ffected byΔQ and c)ΔP and C, whereΔP,ΔQ,ΔE and C represent pesticidemass reduction
ediment (%), respectively.
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meters of thefilter, while sediment from finer soilsmight remain in sus-
pension throughout the filter (Krutz et al., 2005; Lacas et al., 2005).
Moreover, pesticide concentration is likely to be higher on finer sedi-
ment given its larger specific surface area compared to the coarse sedi-
ment (Lacas et al., 2005). Consequently, sediment high in clay content is
likely to reduce VFS sediment trapping efficiency, thereby affecting the
retention of strongly adsorbed pesticides. This feature was represented
in our model, as pesticide removal efficacy was predicted to decrease
with increasing clay content of sediment (Fig. 6c). Another explanation
for this negative correlationmight be thatmore rapid flow is likely to be
generated from source area with poorly-drained soil (high clay con-
tent). Suchunfavorable hydrologic conditionwould decrease the overall
efficiency of a VFS system in removing pollutants from runoff flow.

VFS length was not a significant predictor in our model (Table 4).
This might be attributed to the fact that the relationship between VFS
pesticide removal efficacy and its length is essentially non-linear (Fig.
1 and Zhang et al., 2010), but more importantly, that VFS performance
is mainly determined by the hydrologic response of a VFS system,
which is an implicit function of filter length conditioned by other VFS
parameters and pesticide chemical properties (Fox et al., 2010;
Muñoz-Carpena et al., 2010; Sabbagh et al., 2009). Longer VFS's were
observed to perform better in removingweakly tomoderately adsorbed
pesticides, as greater length increases the opportunity for infiltration
and attachment to sediment particles (Krutz et al., 2005; Zhang et al.,
2010). In our model, therefore, the physical dimensions of a VFS to-
gether with other parameters are distilled into the hydrologic response
of a VFS system, ΔQ and ΔE. These two variables, together with the
properties of incoming pollutants (C and Cat), are believed to be suffi-
cient for quantifying the performance of a VFS system in removing pes-
ticide residues from surface runoff.

Although our model does not incorporate VFS length as an explicit
variable, it could still be coupled with other hydrologicmodels for prac-
tical use. Physically-based hydrologic models, such as VFSMOD, are able
to simulate infiltration and sedimentation processes occurring in VFS's
as a function of filter length, soil texture, and other VFS properties.
Those hydrologic responses could be fed into our model to predict VFS
pesticide removal efficacy. The two modeling systems collectively are
capable of predicting VFS performance and identifying optimal VFS de-
sign parameters, thereby facilitating the successful implementation of
VFS's for surface water protection.

5. Recommendations for future work

More than 80% of the data points used in this study are for weakly to
moderately adsorbed pesticides. This is because experiments on pesti-
cide runoff mitigation by VFS's mainly focused herbicides with Koc less
than 500 ml/g. Independent data sets for strongly adsorbed pesticides
should be developed or identified for further model validation. In addi-
tion, more studies on subsurface processes occurring in VFS's are
needed. This is particularly critical in areas that are vulnerable to
groundwater contamination, i.e., areas with high water tables and
heavy-textured soils (Lacas et al., 2005; Reichenberger et al., 2007).
Whether VFS's increase or decrease pesticide leaching into groundwater
remains controversial, as some observed increased amount of pesticide
leachates due to enhanced infiltration in VFS's (Caron et al., 2012;
Seybold et al., 2001), while others found leachates under the filter
were at very low concentrations as VFS's facilitated pesticide adsorption
and degradation (Watanabe and Grismer, 2001).

6. Conclusion

A model was developed for predicting VFS pesticide removal effi-
ciency using a meta-regression approach (R2=0.83). Our model is
based on hydrologic responses of VFS (infiltration and sedimentation),
pollutant characteristics (clay content of incoming sediment and pesti-
cide adsorption category) and the interaction among these factors. Both
infiltration and sedimentation had positive impacts on pesticide reten-
tion. However, the overall impact of sedimentationwas smaller than in-
filtration, as the volumetric flow rate is likely to be higher than the
volumetric sediment discharge rate by several orders of magnitude. In-
teraction between infiltration and sedimentation was observed, as the
influence of sedimentation gradually increased with infiltration. It is
possible that higher infiltration volume decreases runoff flow depth to
a greater extent, providingmore opportunities for contact between pes-
ticide and sediment, thereby facilitating deposition of sediment-bound
pesticides. Interaction between infiltration and pesticide adsorption
properties was also prominent, as the influence of infiltration was sig-
nificantly lower for strongly adsorbed pesticides. This is due to the fact
that smaller proportions of strongly adsorbed pesticides are transported
in the water phase compared with weakly tomoderately adsorbed pes-
ticides.Moreover, the clay content of incoming sedimentwas negatively
associated with pesticide retention. This could be attributed to the diffi-
culty in removing fine particles, and thereby the associated pesticides,
from runoff flow. Our model outperformed the existing VFSMOD pesti-
cide module not only in predictive power (cross-validation Q2:
0.81 N 0.72) but also in terms of model structure and the underlying sci-
ence foundation. It is believed that our model not only serves as a pow-
erful tool for predicting VFS performance, but also contributes to a
deeper understanding of the complex, interacting VFS processes re-
sponsible for pesticide removal.
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