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The assessment of hydrologic responses to climate change is required inwatershedmanagement and planning to
protect water resources and environmental quality. This study is designed to evaluate and enhance watershed
modeling approach in characterizing climate change impacts on water supply and ecosystem stressors. Soil
and Water Assessment Tool (SWAT) was selected as a base model, and improved for the CO2 dependence of
potential evapotranspiration and stream temperature prediction. The updated model was applied to quantify
the impacts of projected 21st century climate change in the northern Coastal Ranges andwestern Sierra Nevada,
which are important water source areas and aquatic habitats of California. Evapotranspiration response to CO2

concentration varied with vegetation type. For the forest-dominated watersheds in this study, only moderate
(1–3%) reductions on evapotranspiration were predicted by solely elevating CO2 concentration under emission
scenarios A2 and B1. Modeling results suggested increases in annual average stream temperature proportional
to the projected increases in air temperature. Although no temporal trend was confirmed for annual precipita-
tion in California, increases of precipitation and streamflow during winter months and decreases in summers
were predicted. Decreased streamflow during summertime, together with the higher projected air temperature
in summer than in winter, would increase stream temperature during those months and result in unfavorable
conditions for cold-water species. Compared to the present-day conditions, 30–60 more days per year were
predictedwith average stream temperature>20 °C during 2090s. Overall, the hydrologic cycle andwater quality
of headwater drainage basins of California, especially their seasonality, are very sensitive to projected climate
change.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Effects of climate change on the hydrologic cycle and water qual-
ity of a watershed are associated with large uncertainty from both the
climateprojections and the hydrologicmodeling approaches. The interac-
tion between climatic variables and hydrologic components involves
multiple competing processes. For example, elevated concentration of
atmospheric CO2 has direct impacts on plant transpiration, which further
alters the magnitude and seasonality of hydrologic components in the
watershed. Studies indicated reduction of leaf stomatal conductance
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under high CO2 concentration, suggesting a decrease of potential
evapotranspiration (PET) (Medlyn et al., 2001; Morison, 1987; Wand
et al., 1999). Conversely, there are evidences of positive relationship
between CO2 concentration and the total leaf area of a plant, i.e., elevat-
ed CO2 concentration may also increase PET (Pritchard et al., 1999;
Wand et al., 1999). In addition, CO2 concentration also influences the
rate of biomass production and thus shifts the plant growth pattern
(Neitsch et al., 2011; Stockle et al., 1992). Therefore, the actual effects
of elevated CO2 concentration should be determinedwith consideration
of local weather conditions. Similarly, in addition to its direct effects on
stream temperature, higher air temperature is expected to increase PET
and potentially decrease water yield to rivers, which further degrades
the river water quality due to less dilution. However, global warming
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may also intensify hydrologic cycle and further lead to streamflow
increase (Labat et al., 2004). While General Circulation Models (GCMs)
together with greenhouse gas emission scenarios generate future climate
data virtually for any place of the world, their implications for regional
hydrologic cycle and environmental quality are yet poorly understood.

Watershed modeling approach has been widely used in translating
the GCM-generated climate data to their potential effects and manage-
ment implications on regional water resources. For example, modeling
results of a lumped rainfall-runoff model (HSAMI) on the St. Lawrence
tributaries, Canada, suggested higher winter discharges under climate
change, which may induce important modifications of river hydrology
and geomorphological processes to riparian ecosystem (Boyer et al.,
2010). The Hydrologic Modeling System (HEC-HMS) was applied to
the Siurana catchment, Spain, and indicated that the effects of climatic
variables on future water resources was highly dependent on local soil
moisture conditions (Candela et al., 2012). Climate sensitivity analysis
for a hypothesized watershed in western Turkey was conducted based
on Hydrological Simulation Program—Fortran (HSPF), and the authors
concluded that seasonal variations of precipitation and temperature
were very important in predicting the future response of watersheds
(Göncü and Albek, 2010). More modeling efforts are based on the Soil
andWater Assessment Tool (SWAT)with its built-in options for climate
change studies.More than 80 papers have been published for SWAT ap-
plications under climate change scenarios forwatersheds all around the
world (https://www.card.iastate.edu/swat_articles/). SWAT is selected
in this study as a base model to represent the climate change effects
on hydrology and water quality simulations.

Streamflow and stream temperature are usually considered as
representative variables in watershed management and planning.
Streamflow is a comprehensive indicator of water resources and hydro-
logic processes in the drainage area. By relating to its components of
surface runoff, lateral flow, and groundwater recharge, streamflow is
also an important predictor variable for soil erosion and generation of
other pollutants. In addition to physically based modeling of surface
water quality, streamflow could be directly related to pollutant loadings
in a river (Cohn, 1995; Runkel et al., 2004). Stream temperature itself is
frequently included as one of the most important water quality indica-
tors in surface water assessment such as the 303(d) listing by U.S Envi-
ronmental Protection Agency (USEPA, 2011). It also has significant
effects on in-stream biogeochemical variables/processes including
algal growth, dissolved oxygen concentration, nutrient cycling and pro-
ductivity, and chemical reaction kinetics (Ducharne, 2008; Mohseni et
al., 2003; Ozaki et al., 2003). In addition, streamflow and stream tem-
perature are major aspects of water quality for aquatic ecosystems,
and affects the speciation and distribution of fish and other organisms.
Reduced streamflow and/or higher stream temperature by human
activity or climate change are related to the loss of formerly suitable
habitats for native species (Dowling and Wiley, 1986; Harvey et al.,
2006; Ligon et al., 1999; McCullough, 1999). Recently, there have been
substantial research interests in assessing the impacts of projected
climatic changes on stream temperatures and aquatic ecosystems
(Ficklin et al., 2012a; Isaak et al., 2010, 2012; van Vliet et al.,
2011; Webb et al., 2008). The determination of streamflow and
stream temperature is therefore critical for the effective protection
of water resources and water quality and the implementation of
watershed management practices.

Two major issues have been identified for SWAT applications under
climate change scenarios. First, the original SWAT inadequately repre-
sents the effects of CO2 concentration on plant growth and associated
transpiration estimation. The response of leaf stomatal conductance to
the doubling of CO2 concentration is described in SWAT with a reduc-
tion of 40% for all vegetation species, while the CO2-induced increase
of the maximum leaf area index (LAI) is not considered. In addition,
only one value of CO2 concentration is allowed for each set of SWAT
simulation, limiting the model applications for continuous GCM data.
Secondly, SWAT predicts stream temperature based on a simple linear
relationship between air-water temperatures, which may not general
reliable results for all watersheds. Efforts have been made to improve
SWAT for some of the above issues (Eckhardt and Ulbrich, 2003;
Ficklin et al., 2012a; Wu et al., 2012), but an integrated solution is not
presented yet.

This study aims to update the original SWATwithmoremechanistic
responses of hydrologic components and stream temperature to cli-
mate change. In specific, (1) mathematic formulations are modified or
added to SWAT to allow plant type-specific parameters in simulating
the changes of stomatal conductance and leaf area index under elevated
CO2 level; (2) a hydroclimatological model for stream temperature
prediction is developed and integrated into SWAT. The update SWAT
model was applied to selected headwater drainage basins throughout
California with historical weather condition (2001-2010) and down-
scaled GCM data (2001-2099). Results were analyzed for the model
performance of streamflow and stream temperature, and their sensitivity
to climatic variables.

2. Methods and materials

2.1. Soil and water assessment tool and its representations of
changing climate

SWAT is a conceptual semi-distributedmodel developed by the Unit-
ed States Department of Agriculture (USDA) for watershed hydrology
and water-quality operating on daily time step (Neitsch et al., 2011). In
themodel, thewatershed of interest is divided into explicitly parameter-
ized smaller areas of subbasins and enclosed hydrologic response units
(HRUs). The HRUs are delineated by overlaying topography, soil, and
land use maps, and assumed to be homogeneous with respect to their
hydrologic properties. SWAT simulations can be separated into two
major divisions of “land phase” for water and pollutant loadings to chan-
nels, and “routing phase” for in-streamwater quantity and quality. A full
description of SWAT can be found in Neitsch et al. (2011).

SWAT requires daily weather data as inputs. Climate change scenar-
ios for precipitation, air temperature, and wind speed, therefore, can be
easily reflected by manipulating the weather input files. In addition,
SWAT allows user-defined monthly adjustments on precipitation, tem-
perature, solar radiation, and humidity for each subbasin (input param-
eters of RFINC, TMPINC, RADINC, respectively, in the “sub” input files).
In SWAT, CO2 concentration can be also specified for each subbasin.
CO2 concentration is mainly used by SWAT to adjust the calculations
of potential evapotranspiration and the biomass production. The effects
of elevated CO2 level on PET estimation will be discussed in the next
section. For biomass production, SWAT adjusts radiation-use efficiency
(RUE, kg/ha/[MJ/m2]) for elevated atmospheric CO2 concentrations
(Stockle et al., 1992),

RUE ¼ 100CO2

CO2 þ exp r1−r2⋅CO2ð Þ ð1Þ

where CO2 (ppm) is the atmospheric CO2 concentration, and r1 and r2
(dimensionless) are shape coefficients derived from two known RUE
values at the reference CO2 concentration (330 ppm) and a higher con-
centration provided in the SWAT built-in crop database (“crop.dat”).

2.2. Modifications on SWAT for climate change study

2.2.1. CO2 effects on PET estimation
Two competing processes are involved for the effects of elevated CO2

level on evapotranspiration (ET) from vegetation. With higher CO2 con-
centration, less stomata opening is required to obtain the amount of
CO2 necessary for photosynthesis and reduce transpiration rate. At the
same time, plant growth is stimulated by higher CO2 concentration with
increased apparent quantum yield of photosynthesis, resulting in higher
maximum leaf area index (LAI) and transpiration.

https://www.card.iastate.edu/swat_articles/
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SWAT represents the CO2-dependence of stomatal conductance in
the Penman–Monteith method. In other two methods, the Priestley–
Taylor method and the Hargreaves method, CO2 effects on PET are not
incorporated. For CO2 concentration higher than the reference level
(330 ppm), the maximum stomatal conductance (g) is modified as,

gCO2
¼ g⋅ 1:4−0:4⋅ CO2=330ð Þ½ � ð2Þ

where g and gCO2 (m/s) are the stomatal conductance at reference and
given CO2 concentrations, respectively. This equation implies that a
doubling of CO2 concentration from 330 ppm results in a 40% reduction
in stomatal conductance (Easterling et al., 1992; Morison, 1987;
Morison and Gifford, 1983). More recent studies indicated that Eq. (2)
is only appropriate for arable land, while less reductions of stomatal
conductance under elevated CO2 are suggested for forest and range
land. For example, Field et al. (1995) reported an average reduction of
stomatal conductance of 23% by doubling CO2 concentration based on
23 tree species. Similarly, 21% average reduction was reported for tree
species, ranging from 8% for coniferous to 24% for deciduous (Medlyn
et al., 2001). Generally, SWAT overestimates the reduction of stomatal
conductance under elevated CO2 concentration in watersheds with
landuse types other than arable land. To incorporate the broad range
of stomatal conductance responses of difference vegetation species,
Eq. (2) was modified as,

gCO2
¼ g⋅ 1−cð Þ þ c⋅ CO2=330ð Þ½ � ð3Þ

where c (dimensionless) is the plant-specific factor of stomatal conduc-
tance in response to the doubling of CO2 concentration. Negative values
of c indicate the reduction of stomatal conductance. Based on the previous
literature reviews, values of c used in this study were compiled in Table 1.

The original SWAT does not consider the effects of CO2-simulated
plant growth on PET, which can be formulated by following the same
mathematic form as in Eq. (3),

LAImx;CO2
¼ LAImx⋅ 1þ lð Þ−l⋅ CO2=330ð Þ½ � ð4Þ

where LAImx and LAImx,CO2 (dimensionless) are the maximum LAI
before and after the modification to reflect CO2 effects, respectively,
and l (dimensionless) is the vegetation-specific factor of LAImx to a
doubled atmospheric CO2 concentrations from the reference level of
330 ppm. Generally, crop species have greatest value of l, followed by
trees and wild, non-woody species. Table 1 summarizes the values of l
reported in the literature.

The original SWAT only allows a fixed value of atmospheric CO2 con-
centration through the simulation period. Previous studies on CO2 effects
were generally conducted with paired simulations for the reference and
updated CO2 concentrations, implying an abrupt change. In this study,
SWAT was modified to accept annually varied CO2 concentrations speci-
fied in an additional input file. The impacts of elevated CO2 on PET
Table 1
Assumed responses in maximum stomatal conductance and maximum leaf area index to a

Vegetation type Typical landuse codes in SWAT % change of s

Original SWAT
All types All types −40 [1]

Updated SWAT in this study
Deciduous forest FRSD −24 [2]
Coniferous forest FRSE −8 [2]
Mixed forest FRST −16 [3]
Pasture PAST −26.5 [4]
Range land RNGE, RNGB −20 [5]
Arable land AGRL, ORCD −40 [1]

Note: percent changes of stomatal conductance and maximum leaf area index are defined bas
References: [1] (Morison, 1987), [2] (Medlyn et al., 2001), [3] themean value of−24% (deciduous
median value between pasture and forest (Eckhardt and Ulbrich, 2003), [6] (Pritchard et al., 1999
calculation were considered previously in customized modifications on
early versions of SWAT (Eckhardt and Ulbrich, 2003; Wu et al., 2012).
This study presents the first incorporation of those effects in the latest
SWATmodel. In addition, the coefficients c and l in this study were sum-
marized with the specific crop codes as used in SWAT (Table 1), which
would be helpful in the model applications especially with automated
landscape characterizations.

2.2.2. Stream temperature simulation
In the original SWAT, stream temperature is simulated by a linear re-

lationship to daily air temperature. The relationship was developed by
regression analysis based on daily and weekly measurements from 11
streams in the Midwestern United States (Stefan and Preud'homme,
1993),

Tw ¼ 5:0þ 0:75Tair ð5Þ

where Tw and Tair (°C) are the stream temperature and air temperature,
respectively, on the same day of simulation. Resulting stream tempera-
ture is assigned to both thewater yield (total water flow of surface run-
off, lateral flow and groundwater recharge) and the stream discharge in
each subbasin.

A new model of stream temperature prediction is developed based
on our previous study (Ficklin et al., 2012a). The new model simulates
two major processes of water temperature: heat sources (or local
contribution) at each subbasin and heat exchange in stream network.
Hydrologic components of water flows including surface runoff, lateral
flow, groundwater recharge, and streamflow are required in simulating
stream temperature. For stream temperature simulation at subbasin
level, therefore, a flow-weighted water temperature is calculated for
the local contribution,

Tw;local ¼
∑
i

Tw;iQ i

� �
∑
i
Q i

ð6Þ

whereQi (m3/d) are components ofwater yield froma subbasin (specif-
ically, i=1 for snowmelt contribution to surface runoff, 2 for ground-
water recharge, and 3 for other components of the total water yield
including surface runoff and lateral flow contributed from rainfall),
and Tw,i (°C) is the corresponding temperature of the individual hydro-
logic component. The temperature is set to 0.1 °C for snowmelt and a
user-defined annual groundwater temperature for groundwater flow.
The concept of hypothesized equilibrium temperature (Tw,eq, °C) in
some stream temperature models (Edinger et al., 1968; Mohseni and
Stefan, 1999) was introduced to estimate the temperature for Q3,

Tw;3 ¼ Tw;eq ¼
λ⋅Tair;lag Tair;lag > ε

0:5 Tair;lag þ ε
� �

Tair;lag≤ε

(
ð7Þ
doubled atmospheric CO2 concentration.

tomatal conductance (c*100) % change of maximum leaf area index (l*100)

0

+7 [6]
+7 [6]
+7 [6]
+20 [4]
+15 [5]
+37 [6]

ed on a doubled CO2 concentration.
) and−8% (coniferous), [4] (Wand et al., 1999), themean value of C3 and C4 grasses, [5] the
).
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where Tair,lag (°C) is the average of antecedent air temperature during
the past lag days. Time lags are required in the regression analysis with
a short (e.g., daily) time scale (Mohseni and Stefan, 1999; Stefan and
Preud'homme, 1993). Previous studies suggested a lag of 0–20 days
based on daily simulations of stream temperature (Ficklin et al., 2012a;
van Vliet et al., 2011). It's noteworthy that the time lag here has different
meaning to those derived from autocorrelation analysis between the air
and water temperature (Webb et al., 2003). The time lag is used here to
calculate the moving average of antecedent air temperature, based on
which the stream temperature prediction can be optimized according
to the prescribed objective functions. The parameter λ (−) and ε (°C)
are calibration coefficients to represent the overall effects of air–
landscape–water heat transfer during the time of concentration for a
specific subbasin. The air temperature addition coefficient ε is applied
to allow water temperature pluses when Tair,lag is below ε. In our previ-
ous study, the coefficient εwas determined to be between 0 and 4.5 °C
for selected watersheds in the western United States.

In addition to the processes associated with water mixing and
routing in a stream, stream-level simulation adjusts stream tempera-
ture (Tw,stream) based on heat exchange,

T
0

w;stream ¼ Tw;stream þ K⋅TT⋅ Tair;lag−Tw;eq

� �
ð8Þ

where T and T′ are stream temperature before and after the heat
exchange adjustment, respectively, K (1/h) is a bulk coefficient of
heat transferability with range of 0 to 1, TT (h) is the hydraulic reten-
tion time or water travel time through the stream segment within
the subbasin. During the model simulation, a minimum water tem-
perature of 0.1 °C is applied to all predicted Tw's in above Eqs. (6)
to (8). Compared to our previous study (Ficklin et al., 2012a), the
model in this study is designed to provide a more consistent simulation
of stream temperature for highly-variable hydrologic conditions such as
snowmelt-driven systems. The model introduce the concept of equilibri-
um temperature to normalize thewater temperature responses to the air
temperature over a year, thus to avoid seasonal calibrations as required
in the previous study.

2.2.3. SWAT updating and application
SWAT version 2009was selected as the basemodel for modification

and integration. SWAT 2009 is the latest version at the time of this study
with full documentation and support from the developers. Source code
for SWAT was obtained from the official website (http://swatmodel.
tamu.edu/software/swat-model/). The original SWAT was updated by
incorporating the dynamic concentration of CO2, the CO2 effects on
PET calculation, and the newmodel for stream temperature prediction,
and compiled as a new program (“updated SWAT”, thereafter).

In addition to the model parameters required by the original
SWAT, more variables were needed for the updated SWAT. Projected
CO2 concentrations for each year of the 21st century were obtained from
IPCC Data Distribution Center (http://www.ipcc-data.org/ddc_co2.html).
Parameter values of c and l in formulating CO2 impacts on PET were
taken from the literature and summarized in Table 1. The four parameters
(λ, K, ε, and lag) for stream temperature predictionwere calibrated based
on measured data.

Due to the introduction of additional parameters in the stream tem-
perature prediction, the existing tools of automatic calibration designed
for the original SWAT, including ArcSWAT (Winchell et al., 2011) and
SWAT-CUP (Abbaspour, 2011), are not appropriate in this study. A pro-
gramwas developed based on the Sequential Uncertainty Fitting (SUFI)
procedure (Abbaspour et al., 2004) with parallel computations to opti-
mize input parameters for streamflow and stream temperature predic-
tions. The SUFI procedure combines optimization with uncertainty
analysis and can handle a large number of parameters. The objective
function was defined to maximize the Nash–Sutcliffe efficiency (NSE)
(Nash and Sutcliffe, 1976) between observations and predictions at
the outlet of each selected watersheds. RMSE (root-mean-square
error) and PBIAS (percent bias) were also provided as additional statis-
tics for model performance. According to guidelines for evaluating
watershed simulations, “satisfactory” simulations can be judged by
statistics of NSE>0.5 and PBIAS±25% for streamflow (Moriasi et al.,
2007). In addition, the simulation results were considered to be
“good” if NSE was larger than 0.75 (Larose et al., 2007; Van Liew and
Garbrecht, 2003).

2.3. Site description and simulation design

The updated SWAT was applied to headwater drainage basins in
the northern Coastal Ranges and Sierra Nevada mountain range in
California (Fig. 1). As important water supplier for California, those
ranges are associated with higher annual precipitation than the state
average. The Coastal Ranges extend with a general northwest to south-
east orientation along the California coast, and include most of the
mountain ranges between the Klamath Mountains and Transverse
Ranges. The Sierra Nevada runs 640 km north-to-south in California
and Nevada. The western Sierra is drained by Sacramento River and
San Joaquin River, two major watercourses of the California' Central
Valley, and their tributaries. In addition to local water supply, the
northern Coastal Ranges and Sierra Nevada also function as significant
water suppliers to other parts of California. A number of rivers with
year-round streamflow in the study area also support substantial habi-
tats to several species of salmon and steelhead trout. Climate change,
together with urbanization and agricultural development, are increas-
ingly impacting the availability and sustainability of limited water
resources in the ranges, resulting in population decline for various
aquatic species (Feyrer et al., 2007; Moyle et al., 2011; Richter and
Kolmes, 2005).

Site selection in this study was based on the considerations of [1]
spatial coverage of the study area, [2] monitoring data availability of
both streamflow and stream temperature, and [3] natural flow condi-
tions with minimal effects of hydrologic modifications such as dams
and diversions. Selected monitoring sites (Table 2) represented drain-
age areas of small rivers or headwaters which are generally enclosed a
single eight-digit hydrologic unit code (HUC). All sites are activelymon-
itoring by USGS for streamflow and stream temperature at the time of
study, with some historical data missing. For each site, SWAT model
was calibrated and validated by daily predictions of streamflow and
stream temperature during a ten-year simulation period of the last
decade (2001–2010), except for the gauge #11264500 for which
the simulation period is set to 1981–1990 according to the data avail-
ability. The calibrated models were further applied to the projected
climate data for 2001–2099 for evaluating the effects of climate change
on SWAT predictions.

Except for watershed [9] (South Fork Tule River near Porterville,
#18930006), average annual precipitation of the selected headwater
drainage basins are over 1000 mm(Table 2), much higher than the state-
wide average of about 500 mm/year. The studied basins are generally
associatedwith aMediterranean climate, with rainywinter and dry sum-
mers. More than 50% of annual precipitation is contributed by the winter
months conventionally defined as December to February. Some of the
tested watersheds are snowmelt-driven hydrologic system, such as
[1] (Trinity River at Hoopa, #11530000), [7] (Tuolumne River at Grand
Canyon, #11274790), [8] (Merced River near Yosemite, #11264500),
and [9] (South Fork Tule River near Porterville, #11204100). Compared
to others in this study, those watersheds are associated with more
snow accumulation according to the National Snow Analysis (http://
www.nohrsc.noaa.gov/nsa/). Therefore, high streamflow rates for those
sites are mainly observed for the snowmelt season from March through
June, total flow volume in those months accounted for 60-70% of annual
flow. For other basins in this study, monthly distribution of streamflow is
generally correlated to precipitation, andmore than 50% of annual flow is
attributed to the winter seasons. The selected watersheds are mainly

http://swatmodel.tamu.edu/software/swat-model/
http://swatmodel.tamu.edu/software/swat-model/
http://www.ipcc-data.org/ddc_co2.html
http://www.nohrsc.noaa.gov/nsa/
http://www.nohrsc.noaa.gov/nsa/


Fig. 1. Selected watersheds for model evaluation in this study, background raster for annual precipitation from high (blue) to low (red).
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covered by coniferous forest, deciduous forest, and rangeland, which
require plant-specific values for the stomatal conductance reduction
and maximum LAI increase with elevated CO2 concentration (Table 1).

SWAT parameters for hydrologic simulation were initialized
within the ArcSWAT interface (Winchell et al., 2011). Input data for
watershed morphology, including the National Elevation Dataset
(NED), GIRAS land use, and National Hydrography Dataset (NHD),
were obtained from the BASINS database maintained by U.S. Environ-
mental Protection Agency (USEPA, 2007). Soil data was retrieved from
Soil Survey Geographic (SSURGO) Database, and processed by the proce-
dures presented in our previous study (Luo et al., 2012). Daily data of pre-
cipitation, maximum and minimal temperatures, and wind speed were
obtained from gridded observed meteorological data (Maurer et al.,
2002). The dataset is at 1/8 degree (~12 km) spatial resolution, and
recently extended to include data up to year 2010 (http://www.engr.
scu.edu/~emaurer/data.shtml). For the climate change study, downscaled
climate projections with daily data of precipitation, maximum and
minimum temperatures, and wind speed from 2001 to 2099 was taken
from the Green Data Oasis (http://gdo-dcp.ucllnl.org) (Maurer et al.,
2007). The data was downscaled form the native-scale outputs from
climate models to a 1/8 degree grid using the well-established bias-
correction and spatial disaggregation (BCSD) method (Wood et al.,
2002, 2004). All available climate projections for the greenhouse gas
emission scenario A2 (higher greenhouse gas emissions) and B1 (lower
emissions) in the database, i.e., 36 projections for A2 and 37 for B1 with
details in Supplementary Materials, were used in this study in order to
capture the variations and uncertainty of climate response to future
increased greenhouse gas levels. Solar radiation and relative humidity
was generated by the WXGEN weather generator (Sharpley and
Williams, 1990). This generator has been fully incorporated in SWAT
with monthly climatic statistics from historical data over United States.
These statisticswere left invariant in themodel simulations under climate
change scenarios due to data limitation.

3. Results and discussion

3.1. Hydrological simulation

Model performance was first evaluated for streamflow prediction
with measured data during 2001–2010 (except for watershed [8] with
1981–1990), with the first 5 years for model calibration and the last
5 years for validation. Input parameters to be calibrated were selected
based on our previous studies (Ficklin et al., 2012b; Luo et al., 2008)
and preliminary sensitivity analysis, mainly including the SCS runoff
curve number (CN), snowmelt-related parameters, channel hydraulic
conductivity, and parameters for groundwater recharge (see Supple-
mentary Material for the list of parameters). Hydrologic calibration in
this study was simplified by uniformly altering each input parameter
for the entire drainage basin to optimize the prediction of streamflow.
For example, a CN2 (CN for moisture condition II) adjustment of −
10% for a specific watershed suggested that CN2 values in all upstream
HRUs will be decreased by 10% from the corresponding initial values
assigned by ArcSWAT. Further calibration, especially with spatially dis-
tributed parameterization, may improve the model performance, but
increases the modeling complexity and goes beyond our study scope.

The performance of the calibrated models in simulating daily
streamflow is summarized in Table 3, and the modeling results
were plotted with observations in Supplementary Materials. For

http://www.engr.scu.edu/~emaurer/data.shtml
http://www.engr.scu.edu/~emaurer/data.shtml
http://gdo-dcp.ucllnl.org


Table 2
Site descriptions for (a) the USGS gauges selected in this study and (b) their drainage areas.

(a) information of river sites

ID USGS site # and name Latitude Longitude Elevation (m) Average streamflow (cms) Average stream temperature (°C)

[1] 11530000 (Trinity River at Hoopa, CA) 41.05 −123.67 84 119.6 13.3
[2] 11468900 (Mattole River near Ettersburg, CA) 40.14 −123.99 176 8.0 12.5
[3] 11381500 (Mill Creek near Los Molinos, CA) 40.05 −122.02 117 7.8 12.9
[4] 11383500 (Deer Creek near Vina, CA) 40.01 −121.95 146 6.6 13.7
[5] 11390000 (Butte Creek near Chico, CA) 39.72 −121.71 45 9.4 12.6
[6] 11467000 (Russian River near Guerneville, CA) 38.51 −122.93 6 47.7 16.0
[7] 11274790 (Tuolumne River at Grand Canyon above Hetch Hetchy) 37.92 −119.66 1167 18.3 9.0
[8] 11264500 (Merced River near Yosemite, CA) 37.73 −119.56 1228 11.6 7.5
[9] 11204100 (South Fork Tule River near Porterville, CA) 36.02 −118.81 296 1.2 15.0

(b) information of the drainage area

ID USGS site # Enclosing HUC Drainage area (km2) Average elevation (m) Precipitation (mm/year) Average air temperature (°C)

January July

[1] 11530000 18010211 7304 991 1051 0.5 19.4
[2] 11468900 18010107 149 445 1895 7.9 15.5
[3] 11381500 18020119 335 798 1301 1.0 20.0
[4] 11383500 18020119 532 1146 1301 3.1 22.3
[5] 11390000 18020120 376 1073 1467 5.4 24.3
[6] 11467000 18010110 3425 267 1094 7.4 21.5
[7] 11274790 18040009 771 2526 1126 −6.4 15.2
[8] 11264500 18040008 463 2582 1189 −5.1 15.8
[9] 11204100 18030006 245 1232 538 4.8 24.3

Notes: [1] the identification number (ID) is used as index to the river site and the drainagewatershed of the site; [2] the enclosingHUC is the 8-digit HUCwhere themajority of drainage area of
the corresponding site is located. The sites themselvesmay be in a downstream hydrologic unit. For example, the sites #11381500 and 11383500 are in the HUC of 18020103, but 98% of their
drainage areas are in the HUC of 18020119. [3] Averages of climate variable and river measurements are based on data from 2001 to 2010, except for watershed [8] (Merced River near
Yosemite, #11264500) for which simulations are based on data during 1981–1990 due to its data limitation in stream temperature measurements. cms = cubic meter per second.
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each site, the values of goodness-of-fit statistics (NSE, RMSE, and
PBIAS) were similar for the calibration and validation periods. There-
fore, the statistics are only reported for the whole 10-year simulation
period. With appropriate calibrations, SWAT generated satisfactory
(NSE>0.50) results in comparison with the observed data of daily
streamflow at the outlets of selected watersheds. The average NSE
of the studied watershed was 0.68, ranging from 0.51 to 0.81.
In some watersheds, SWAT failed to capture the flood events
with extremely high flow rate during winter season. At gauge
#11530000, for example, SWAT underestimated flood events with
flow rate>1500 cms (or the 99.992th percentile of daily measurements
during the 10-year period). This may be related to the homogeneous
assumption of SWAT, e.g., basin-wide average parameters for snowmelt
simulation and one set of parameters for all channels in each subbasin.
In addition, SWAT is not designed to simulate detailed, single-event
flood routing (Neitsch et al., 2011).

For comparison with other studies of streamflow prediction in
California, monthly statistics between observed and predicted
streamflow are also reported in this study (Table 3). According to
Table 3
Statistics comparing observed and predicted daily streamflow at the selected sites in
this study.

ID USGS site # Daily simulation results Monthly averages

NSE RMSE (cms) PBIAS NSE RMSE (cms) PBIAS

[1] 11530000 0.74 83.56 0.11 0.87 45.55 0.11
[2] 11468900 0.67 11.38 −0.11 0.88 4.60 −0.12
[3] 11381500 0.52 6.57 0.06 0.85 2.33 0.06
[4] 11383500 0.70 6.81 0.22 0.83 3.40 0.22
[5] 11390000 0.73 7.92 0.14 0.80 4.60 0.14
[6] 11467000 0.73 70.08 0.15 0.86 32.24 0.15
[7] 11274790 0.51 5.29 −0.24 0.70 3.82 −0.24
[8] 11264500 0.81 7.35 −0.11 0.90 4.75 −0.10
[9] 11204100 0.68 0.78 −0.17 0.77 0.30 −0.17

Notes: The site ID refers to that in Table 2. The simulation period is 2001–2010 except
for #11264500, for which the 10-year period of 1981–1990 was used according to the
data availability of stream temperature. cms = cubic meter per second.
the reported NSE values, SWAT simulations in this study generate
comparable modeling performance to our previous modeling stud-
ies in the foothills of Costal Range (Luo et al., 2008) and in the Sierra
Nevada (Ficklin et al., 2012b). In addition, this study reported monthly
RMSE normalized by average observations of 27%–57%, comparable to
the results of 38%–65% reported by Young et al. (2009) based on hydro-
logic simulations with WEAP (Water Evaluation and Planning System)
for the Sierra Nevada. In summary, the calibrated models were consid-
ered suitable in establishing a reliable hydrological framework for
further studies of stream temperature and climate change.

3.2. Stream temperature simulation

Based on the calibrated model for streamflow, the SWAT was
utilized to simulate stream temperature at daily time step for the
same 10-year period. Two sets of simulations were conducted based
on [1] the original SWATwith linearmodel for stream temperature sim-
ulation, and [2] the updated SWAT with the new stream temperature
model. The linear model is only dependent on the average air tempera-
ture, Eq. (5), thus no calibration is required. For the newly developed
model, similar to model evaluation for streamflow simulation, mea-
sured data of stream temperature for the first 5 years were used for
model calibration, while the last 5 years were used for validation. For
each monitoring site of stream temperature, the update SWAT was
calibrated with four parameters (λ, K, ε, and lag) by comparing the ob-
served and predicted daily stream temperature. Parameter alteration
was conducted on drainage area basis, i.e., the numerical value of a
specific parameter would change simultaneously for all upstream
subbasins of a monitoring site. Therefore, the calibrated parameters
actually represented average thermal properties of the entire drainage
area of the site. This approach is justified by the fact that stream temper-
ature at a downstream is location potentially affected by heat sources and
transfers of upstream landscape and waterways.

Table 4 compares the model performance of stream temperature
prediction by the linear model in the original SWAT and the new model
of stream temperature prediction in updated SWAT. For all watersheds



Table 4
Model performance and calibrated parameters for daily stream temperature prediction.

(a) Model performance

The original SWAT The updated SWAT

ID USGS site # NSE RMSE (°C) PBIAS NSE RMSE (°C) PBIAS

[1] 11530000 0.83 2.25 0.09 0.91 1.66 0.01
[2] 11468900 0.62 3.08 0.01 0.74 2.52 −0.01
[3] 11381500 0.52 3.89 0.26 0.88 1.91 0.002
[4] 11383500 0.53 4.37 0.28 0.82 2.69 0.05
[5] 11390000 0.80 2.47 −0.12 0.84 2.17 0.02
[6] 11467000 0.80 2.10 0.07 0.83 1.93 0.03
[7] 11274790 0.78 2.87 0.17 0.89 2.03 −0.002
[8] 11264500 0.64 2.93 −0.30 0.85 1.90 0.02
[9] 11204100 0.83 2.66 −0.13 0.90 2.00 0.002

(b) Calibrated parameters in the updated SWAT for stream temperature prediction

ID USGS site # λ K (1/h) ε (°C) lag (day)

[1] 11530000 1.11 0.06 5.84 9
[2] 11468900 1.32 0.04 5.33 7
[3] 11381500 0.97 0.07 5.98 2
[4] 11383500 1.25 0.05 7.09 2
[5] 11390000 0.78 0.13 2.69 8
[6] 11467000 1.04 0.04 5.38 3
[7] 11274790 1.29 0.39 5.65 8
[8] 11264500 1.07 0.01 5.70 5
[9] 11204100 1.00 0.27 5.04 7

Note: The site ID refers to that in Table 2.
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in this study, the updated SWAT improved stream temperature simula-
tions compared to the original one. Averagemodel performance statistics
of NSE and RMSE were 0.85 and 2.09 °C, respectively, for the updated
SWAT; and NSE of 0.70 and RMSE of 2.96 °C for the original SWAT. The
averages of the absolute PBIAS were 1.5% and 15.9% for the updated and
original SWAT, respectively. While there are no strict criteria of accept-
able model performance in stream temperature prediction, statistics in
Table 4 were compared to those reported in previous studies. For exam-
ple, Mohseni et al. (1998) reported average NSE of 0.93 and average
RMSE of 1.64 °C (weekly simulation) in 584 USGS gauges, van Vliet et
al. (2011) reported average NSE of 0.85 and average RMSE of 2.26 °C
(daily simulation) for worldwide major rivers, and Ficklin et al. (2012a)
reported averageNSE of 0.82 (daily simulation) for 7watersheds inwest-
ern United States.

Further investigation indicated that the original SWAT generated
relatively poor predictions forwinter and summer seasons. This is related
to the fact that stream temperature responses to air temperature deviate
from linearity for high or low air temperatures (Mohseni and Stefan,
1999; Mohseni et al., 1998). The NSE by the original SWAT for summer
season of June to August averaged at −1.42, while the updated SWAT
had better predictions during the same period with average NSE of 0.56.
Reliable prediction of summer stream temperature is required by risk
assessment and management planning for healthy aquatic habitats.
3.3. Effects of climate change

3.3.1. Climate changes characterized by the selected projections
Table 5 summarizes the changes of precipitation, air temperature, and

wind speed as annual average between two 10-year periods of 2089–
2099 and 2001–2010 based on the selected GCM projections for the
grid nodes close to the USGS gauges (Table 2). In this study, changes of
hydrologic components such as precipitation, streamflow, and ET were
presented in a relative format (%). Absolute changes were reported for
air temperature (°C) and wind speed (m/s).

Decreases in precipitation were observed at most of the watershed
in this study, especially under the A2 scenarios, but none of them
were statistically significant. Relative to air temperature and wind
speed, the changes of precipitation were associated with much higher
variability to projections and to the geographic locations (Fig. 2). The
great uncertainty in the GCM-predicted precipitation should be consid-
ered when presenting climate change and its effects on the predictions
of hydrologic and environmental components. Significant increases of
air temperature were observed for all studiedwatersheds, withmedian
increases of 3.0–3.8 °C with the A2 scenarios, and about 1.5 °C with the
B1 scenarios. Changes of air temperature in the B1 scenarios were asso-
ciated with higher uncertainty relative to the A2 ones, suggested by the
coefficient of variations averaged 0.4 and 0.2, for the B1 and A2 scenar-
ios, respectively. Similarly, GCM data indicated that wind speed consis-
tently increased by 0.2 m/s with the A2 scenarios and 0.1 m/s with the
B1 scenarios for all simulated watersheds, generally proportional to the
magnitudes of air temperature increases.

Further analysis on monthly data concluded uneven changes of
precipitation over a year (Fig. 3 with the watershed of Trinity River at
Hoopa, USGS#11530000 and watershed of Tuolumne River at Grand
Canyon, #11274790 as examples). Generally significant increases
of precipitation are observed during winter rainfall seasons, while
for summer months decreases in precipitation are frequently pre-
dicted. In addition to the general decreasing trend of annual precip-
itation with high uncertainty observed for most of the watersheds
(Table 5), GCM data characterizes the future climate of California
with wetter winters and drier summers. Similarly, temperature increase
is greater in summer than in winter, especially for the A2 scenarios,
which would have significant effects on plant growth, water quality,
and ecosystem health. Those findings are consistent to the results in
other studies (Cayan et al., 2009; Pan et al., 2011; Pierce et al., 2012).
No substantial seasonal pattern was detected for the changes of wind
speed.

3.3.2. Sensitivity to the changes on individual climate variables
Before the investigation of the integrated effects of climate change on

hydrologic and water quality predictions, sensitivity analysis to the indi-
vidual climate variables (CO2 concentration, air temperature, and precip-
itation) were conducted by changing one-factor-at-a-time (OAT). CO2

concentration, with reference value of 330 ppm, was set to 846 and
544 ppm for the A2 and B1 scenarios (IPCC, 2000). Changes on the air
temperature and wind speed were selected to represent the expected
values in the study area (Table 5). In summary, air temperature was in-
creased by 3.5 (A2) and 1.5 °C (B1), while wind speed was increased by
0.2 (A2) and 0.1 (B1) m/s. Since no statistically significant trend was
detected for precipitation, its relative change was assignedwith arbitrary
values of ±10%. The adjustments on precipitation, air temperature, and
wind speed were uniformly applied to all months during the simulation
period.

A sensitivity index (S) was defined to compare the results of OAT
analysis (Lenhart et al., 2002; Luo et al., 2008),

S ¼ ΔP
ΔI

I0
P0

ð9Þ

where P is the dependent variable in the sensitivity analysis, such as
streamflow, ET, and stream temperature in this study, and I is the
climatic variables including CO2 concentration, precipitation, air tem-
perature, and wind speed. The sensitivity index provided a transfer
function to propagate the relative error of the input variables into the
relative error of the prediction. Results indicated that variation of ET
wasmainly determined by air temperature andmoderately contributed
by precipitation and wind speed (Table 6). As expected, the prediction
of streamflow was mainly sensitive to precipitation. The sensitivity
index of about 1.3 suggested that 10% increase or decrease of precipita-
tion would result in 13% change in streamflow on an annual basis. For
stream temperature, air temperaturewas themost sensitive parameter.

Changes in precipitation proportionally affect annual streamflow
in all watersheds, mainly resulting from the change of surface run-
off amount especially during winter rain season (Table 7). About
±1% changes in ET flux were predicted with precipitation changes



Table 5
Annual average of climatic variables during 2090–2099 relative to those during 2001–2010 for the selected GCM projections, expressed as median changes and their IQRs (in
parentheses).

ID USGS site # Δ Precipitation (%) Δ Average air temperature (°C) Δ Wind speed (m/s)

A2 B1 A2 B1 A2 B1

[1] 11530000 1.2 (25.2) −1.0 (17.2) 3.1 (1.0) 1.4 (0.8) 0.2 (0.1) 0.1 (0.1)
[2] 11468900 0.6 (21.7) 2.8 (19.0) 3.0 (1.0) 1.4 (0.8) 0.2 (0.1) 0.1 (0.1)
[3] 11381500 −0.5 (24.5) 2.2 (20.1) 3.6 (1.2) 1.5 (0.9) 0.2 (0.1) 0.1 (0.1)
[4] 11383500 −0.5 (24.5) 2.2 (20.1) 3.6 (1.2) 1.5 (0.9) 0.2 (0.1) 0.1 (0.1)
[5] 11390000 −1.6 (24.1) 0.8 (21.6) 3.6 (1.3) 1.6 (0.9) 0.2 (0.1) 0.1 (0.1)
[6] 11467000 −2.6 (26.4) 1.2 (22.3) 3.1 (1.0) 1.4 (0.9) 0.2 (0.1) 0.1 (b0.1)
[7] 11274790 −9.4 (29.6) −1.5 (27.4) 3.8 (1.6) 1.6 (0.9) 0.2 (0.1) 0.1 (0.1)
[8] 11264500 −9.7 (29.5) −2.0 (25.8) 3.8 (1.5) 1.6 (0.9) 0.2 (0.1) 0.1 (0.1)
[9] 11204100 −14.1 (33.2) −5.7 (24.4) 3.8 (1.5) 1.6 (0.9) 0.2 (0.1) 0.1 (0.1)

Note: The site ID refers to that in Table 2. According to the Wilcoxon test results, all the changes on precipitation are not significant (p>0.05), and all the changes on average air
temperature and wind speed are significant (pb0.001).
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of ±10%, which could be related to the corresponding changes in soil
water content. Precipitation change also had detectable effects on stream
temperature especially during summer months, although the annual
average sensitivity was very small. Stream temperature was impacted
by precipitation through its influence on streamflow rate: increased
streamflow and decreased hydraulic retention time would reduce
stream temperature according to Eq. (8). Changes in stream temperature
were significantly correlated to those of average air temperature. The
ratio between changes in air temperature and stream temperature was
about 0.8 for both scenarios A2 and B1, suggesting the air temperature
increase of 1 °C would result in an increase of 0.8 °C of stream tempera-
ture as annual average. As expected, a higher air temperature increased
ET and decreases stream temperature, but did not have significant effects
on annual streamflow.

The median reduction of ET was 3.11% over the selected water-
sheds with the increase of CO2 concentration under the A2 scenario
(846 ppm), and 1.27% under the B1 scenario (544 ppm). The magni-
tude of relative ET reduction was mainly related to the landuse types
in a watershed. For all tested watersheds, the average reductions of
ET were 10.6% for agricultural land, 5.7% for deciduous forest, 4.2%
for rangeland, and 2.2% for coniferous forest, by solely doubling CO2

concentration. The resultant reductions were significantly correlated to
the percent change of stomata conductance (c value, r=−0.99, p=
0.01) in response to the doubling of CO2 concentration (Table 1).
By decreasing ET, the elevated CO2 concentration has positive effects
on streamflow. However, the sensitivity index of streamflow to ET,
(ΔQ/Q)/(ΔET/ET) variedwithwatersheds. Further data analysis indicated
moderate association between the sensitivity and the aridity index
(PET/P, where P is annual average precipitation) over the tested
Fig. 2. Percent change of annual precipitation of 2090–2099 relative to that of 2001–
2010 under the A2 and B1 projections. Squares indicate mean values. Outliers are not
shown. Site ID refers to that in Table 2.
watersheds (r=−0.70, p=0.03). This funding suggested that
streamflow in arid area might be more sensitive to the change of
CO2 concentration.

To demonstrate the SWATmodifications in the study,model simula-
tionswere conductedwith andwithout the CO2 adjustments on the cal-
culations of stomatal conductance and leaf area index. Comparison here
was based on the modeling results at the watershed of Trinity River at
Hoopa (USGS#11530000), which is mainly covered by FRSE (88%). In
the original SWAT with c=0.4 for all vegetation and no consideration
of CO2-dependence of LAImx (l=0), the predicted ET reduction was
18% and 6% under the B2 and A1 scenarios, repetitively. The effects of
CO2 are significantly alleviated by introducing the less reduction of
stomatal conductance and greater LAImx under elevated CO2 concentra-
tion. When adjusting c to small values such as 0.08 for FRSE, predicted
ET reduction was decreased to 2% under the A2 scenario, and 1%
Fig. 3.Monthly changes (%) of projected precipitation and predicted streamflownormalized
by the annual averages for each month, 2089–2099 vs. 2001–2010 for (a) the watersheds
[1] and (b) [7] (Table 2).
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Table 6
Sensitivity index (S) of streamflow, ET, and strea, temperature to climatic variables
based on sensitivity analysis by changing one factor-at-a-time (OAT), presented as me-
dian changes and IQR (in parentheses) over the selected watersheds.

OAT scenarios ET Streamflow Stream temperature

CO2_A2 −0.02 (0.02) L 0.005 (0.003) N 0 (0) L
CO2_B1 −0.02 (0.02) L 0.005 (0.002) N 0 (0) L
pcp+10% 0.13 (0.11) M 1.30 (0.08) VH −0.02 (0.03) N
pcp-10% 0.14 (0.12) M 1.28 (0.10) VH −0.02 (0.06) N
+3.5 °C 0.33 (0.24) H −0.07 (0.12) M 0.71 (0.29) H
+1.5 °C 0.34 (0.22) H −0.07 (0.15) M 0.64 (0.26) H
+0.2 m/s 0.09 (0.20) M −0.04 (0.09) N 0 (0) L
+0.1 m/s 0.07 (0.21) M −0.04 (0.09) N 0 (0) L

Notes: VH: very high sensitivity (|S|≥1); H: high (|S|≥0.2); M: moderate (|S|≥0.05),
and L: low (|S|b0.05) (Lenhart et al., 2002).

Table 8
Changes of predicted annual averages of streamflow and stream temperature under the
selectedGCMprojections, presented asmedian and IQR (in parentheses) over the selected
climate projections.

Δ Streamflow (%) Δ Stream temperature (°C)

ID USGS site # A2 B1 A2 B1

[1] 11530000 5.9 (37.4) * 3.2 (26.0) * 2.6 (0.9) *** 1.2 (0.7) ***
[2] 11468900 4.8 (36.0) NS 1.8 (23.1) NS 3.5 (1.1) *** 1.6 (1.0) ***
[3] 11381500 0.1 (36.7) NS 3.5 (27.0) NS 2.2 (0.8) *** 1.0 (0.6) ***
[4] 11383500 0.2 (35.4) NS 4.7 (27.1) NS 2.7 (0.9) *** 1.2 (0.7) ***
[5] 11390000 1.0 (37.0) NS 7.0 (32.6) * 2.2 (0.8) *** 1.0 (0.6) ***
[6] 11467000 4.1 (48.3) NS 8.2 (39.2) * 2.5 (0.7) *** 1.1 (0.7) ***
[7] 11274790 −2.3 (38.9) NS 8.4 (33.8) ** 2.7 (1.2) *** 1.2 (0.7) ***
[8] 11264500 −1.4 (37.0) NS 4.5 (26.0) ** 2.1 (0.8) *** 1.0 (0.5) ***
[9] 11204100 7.4 (52.6) ** 17.7 (61.3) *** 2.7 (1.1) *** 1.2 (0.8) ***

Notes: The ID refers to that in Table 2. Statistical significances based on the Wilcoxon
test, where *: pb0.05, **: pb0.01, ***: pb0.001, NS: not significant (p>0.05).
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under the B1 scenario. Accordingly, the expected increase of streamflow
would be also alleviated, from 4.9% to 0.6% (A2), and 1.5% to 0.2% (B1).

3.3.3. Integrated effects
For each of the tested watersheds, the calibrated SWAT for

streamflow and stream temperaturewas applied to the climatic projec-
tions from the 73 GCMs for 2001–2099. Daily predictions during two
10-year periods of 2001–2010 and 2090–2099 were extracted from
the model simulations. Similar to the quantification of climate change,
the responses of predicted streamflow and stream temperature to cli-
mate change were defined as their changes between the two periods,
as 10-year annual averages or long-term monthly averages. Compared
to the OAT-based sensitivity analysis, model applications with GCM
data reflected the integrated effects of climate variables on hydrologic
and water quality simulations. In addition, the sensitivity analysis as-
sumed uniform changes of climate variables in a year, while by using
GCM data the projected seasonal dynamics of climate change can be
incorporated in the SWAT simulation. Predicted increases of annual av-
erage stream temperature were 2.1–3.5 °C under the A2 scenario and
1.0–1.6 °C under B1 scenario, generally proportional to the projected
increases of average air temperature (Table 8). Similarly, strong linear-
ity between climate change and modeled changes on hydrologic
components was detected for all watersheds. Taking the watershed
[1] as an example, changes in annual average streamflow predicted
by SWAT was significantly correlated to the precipitation changes,
r=0.971 (pb0.001) for the A2 projections and r=0.975 (pb0.001)
for the B1 projections. Positive interceptions (about+4% for the water-
shed [1]) were observed in the linear regression between precipitation
change and streamflow change, suggesting an increasing trend of annu-
al average streamflow even with invariant amount of annual precipita-
tion. This is associated with positive effects of elevated air temperature
and CO2 concentration on streamflow in the study area. It also
explained the general increases of predicted streamflow (Table 8) dur-
ing 2090–2099 in comparison to current condition (2001–2010), al-
though not all of the increases were statistically significant.
Table 7
Results of climate sensitivity analysis by changing one factor-at-a-time (OAT), presented
as median changes and IQR (in parentheses) over the selected watersheds.

OAT scenarios Δ ET (%) Δ Streamflow (%) Δ Stream temperature (°C)

CO2_A2 −3.11 (3.58) ** 0.80 (0.51) ** 0.00 (0.00) NS
CO2_B1 −1.27 (1.39) ** 0.30 (0.14) ** 0.00 (0.00) NS
pcp+10% 1.29 (1.15) ** 13.05 (0.84) ** −0.03 (0.04) *
pcp-10% −1.44 (1.18) ** −12.84 (1.05) ** 0.03 (0.07) *
+3.5 °C 8.81 (2.56) ** −2.26 (2.91) ** 2.88 (0.53) **
+1.5 °C 3.75 (2.60) ** −1.06 (1.34) ** 1.20 (0.20) **
+0.2 m/s 0.62 (1.49) * −0.32 (0.89) ** 0.00 (0.00) NS
+0.1 m/s 0.26 (0.77) * −0.16 (0.46) ** 0.00 (0.00) NS

Note: Statistical significances based on the Wilcoxon test, where *: pb0.05, **: pb0.01,
***: pb0.001, NS: not significant (p>0.05).
As mentioned before, GCM data suggests increased precipitation
during cold seasons and decreases in warm seasons at the end of the
21st century (Fig. 3), although annual total precipitation would not sig-
nificantly change (Table 5). Therefore, increased streamflow during
winter months and decreased streamflow during summertime were
predicted for all watersheds (watersheds [1] and [7] are demonstrated
in Fig. 3, other watershed in Supplementary Materials). The overall
changes on annual streamflowweremainly determined by the seasonal
distribution of precipitation and the weather pattern of the watershed.
Generally, significant reductions of annual streamflow were mainly
associated with the snowmelt-driven watersheds and with the B1
scenarios. For watersheds significantly affected by snowmelt, a de-
creased streamflow as annual average under climate change scenarios
might be predicted since majority of flow volume in those watersheds
are contributed by spring and summermonths. For watersheds affected
by snowmelt, in addition, the seasonality of precipitation change was
significantly magnified in the resultant seasonality of streamflow. For
example, inwatershed [7] themedianmonthly changes of precipitation
ranged from −37% to +23% for the A2 scenarios, while the predicted
changes in streamflow were −92% to +77% (Fig. 3). This might be
explained by the effects of air temperature on snowmelt-driven hydro-
logic system: increased air temperature duringwinter seasons results in
more precipitation in the form of rainfall rather than snowfall, and
significantly shifted the streamflow peaks from snowmelt season to
early months compared to the baseline scenarios.

Relative to the baseline scenario, the annual average of predicted
stream temperature (Table 8) increased by 2.1–3.5 °C (the A2 scenarios)
and 1.0–1.6 °C (the B1 scenarios), consistent to the projected increases of
air temperature (Table 5). Monthly pattern of stream temperature
changes were similar in the tested watersheds, with higher increase of
stream temperature during summers compared to that in wintertime
(Fig. 4). Generally, stream temperature in summers was more sensitive
to air temperature change. At the site [1] (Trinity River at Hoopa) under
the A2 scenarios (Fig. 4), for example, stream temperature duringwinters
(December to February) increased from 7.6 (the baseline scenario) to
8.9 °C (median of predictions), in response to the air temperature change
from 5.0 to 7.7 °C, suggesting a relative sensitivity of 0.3 compare to that
of 0.9 for summer months (June to September). This could be related to
the injection of cold snowmelt water which would alleviate the increase
of stream temperature during winters, and to the significant streamflow
decreases detected during summers in the study area (Fig. 3). During
summer months (June to August), median increases of predicted stream
temperature of 2090–2099 relative to that of 2001–2010were 2.7–6.1 °C
under the A2 scenarios, and 1.2–2.6 °C under the B1 scenarios over the
study area. A simple risk assessment on aquatic habitats was conducted
by determining the probability of daily stream temperature higher than
20 °C, the maximum value of stream temperature thresholds for Pacific
migratory salmonid species over various life stages (USEPA, 2003). Over



Table 9
Probability of daily stream temperature exceeding 20 °C under the baseline simulation
and climate projections.

ID USGS site # Baseline A2 B1

[1] 11530000 0.15 0.31 0.23
[2] 11468900 0.04 0.18 0.09
[3] 11381500 0.17 0.32 0.24
[4] 11383500 0.20 0.35 0.27
[5] 11390000 0.15 0.30 0.23
[6] 11467000 0.28 0.43 0.35
[7] 11274790 0.04 0.26 0.13
[8] 11264500 0.00 0.05 0.00
[9] 11204100 0.29 0.40 0.34

Notes: The ID refers to that in Table 2. For the predictions under climate change scenar-
ios, the median probabilities over the projections are reported.

81Y. Luo et al. / Science of the Total Environment 450–451 (2013) 72–82
the tested watersheds, the median probability of exceedance was in-
creased from 15% under the baseline condition to 31% (for the A2 scenar-
ios) or 23% (B1), suggesting an 8–16% (or about 30–60 days per year)
increase of undesirable condition for salmon and trout in the river
segment at the watershed outlet (Table 9).

3.3.4. Summary and conclusion
In order to characterize the climate change effects on hydrology

and water quality at watershed scales, CO2 dependence of potential
evapotranspiration and stream temperature prediction were incorpo-
rated in watershed modeling approach. While the incorporation and
evaluation were only demonstrated in SWAT, the approach devel-
oped in this study could be adapted for other watershed models.
The updated SWAT was applied to the field conditions of 9 headwater
drainage basins in the Coastal Ranges and Sierra Nevada of California.
After calibrations for streamflow and stream temperature, the model
was used to simulate the effects of climate change on hydrologic
components based on 73 climate projections with either A2 or B1
emission scenarios for the 21th century. Simulation results were
presented as changes between the two 10-year periods of 2001–
2010 and 2090–2099. This is one of the first modeling efforts in evaluat-
ing the ensemble of projected climate changes in terms of their signifi-
cances for both water supply (streamflow in this study) and ecosystem
stressors (stream temperature as an example) within a risk assessment
framework.

With appropriate calibration in this study, SWAT generated satisfac-
tory predictions of daily streamflow during a 10-year period, indicated
by resultant NSE of 0.51 to 0.81 and PBIAS of −0.17 to 0.22 for the se-
lected watersheds. For stream temperature simulation, the model well
captured the spatial and temporal viability of daily stream temperature
Fig. 4. Monthly changes (°C) of projected air temperature (Tair) and predicted stream
temperature (Tstream) for each month, 2089–2099 vs. 2001–2010 for (a) the water-
sheds [1] and (b) [7] (Table 2).
over the study area, withNSE of 0.74 to 0.91 and PBIAS of−0.01 to 0.05.
Modeling performance for stream temperature prediction was signifi-
cantly improved in comparison with the linear function in the original
SWAT (NSE of 0.52–0.83 and PBIAS of −0.30 to 0.28).

Effects of CO2 concentration on actual ET level were dependent on
the landuse types. By solely doubling CO2 concentration in the study
area, the average reductions of ET were 10.6% for agricultural land,
5.7% for deciduous forest, 4.2% for rangeland, and 2.2% for coniferous
forest. By decreasing ET, the elevated CO2 concentration has positive
effects on streamflow. Further data analysis indicated that streamflow
in watersheds with higher aridity index might be more sensitive to
the change in CO2 concentration. GCM data suggests significant in-
creases of air temperature in all testedwatersheds,withmedian increases
of 3.0–3.8 °C for the A2 scenarios, and about 1.5 °C for the B1 scenarios.
Predicted increases in annual average stream temperature (2.1–3.5 °C
for the A2 scenario and 1.0–1.6 °C for the B1 scenario) were general pro-
portional to the projected increases in air temperature. Although no tem-
poral trendwas confirmed for annual precipitation in California, increases
of precipitation during winter months and decreases in summers were
generally observed from climatic projections. Undesirable conditions for
aquatic ecosystem health were detected by data analysis on GCM projec-
tions and hydrologic simulations under climate change scenarios. First,
higher air temperature increase was observed during summers than
winters. In addition, streamflow decrease in summers was predicted for
all watersheds in this study (caused by the decrease in precipitation
and the shifting in snowmelt peaks), which further increased stream
temperature during those months. Consequently, the median probability
of daily stream temperature exceeding 20 °C was increased from 15%
under the current condition to 31% (for the A2 scenarios) or 23% (B1)
predicted at the end of the 21st century over the study area.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.scitotenv.2013.02.004.
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