
lable at ScienceDirect

Environmental Modelling & Software 49 (2013) 129e140
Contents lists avai
Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft
Application of a combined sensitivity analysis approach on a pesticide
environmental risk indicator

Yu Zhan, Minghua Zhang*

Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA
a r t i c l e i n f o

Article history:
Received 11 January 2013
Received in revised form
13 August 2013
Accepted 20 August 2013
Available online

Keywords:
Sensitivity analysis
Correlation
Sobol’ method
Importance measurement
Pesticide risk
* Corresponding author. Department of Land, Air
Veihmeyer Hall, University of California, Davis, CA 9
4953; fax: þ1 530 752 1552.

E-mail addresses: yzhan@ucdavis.edu (Y. Zh
(M. Zhang).

1364-8152/$ e see front matter � 2013 Elsevier Ltd.
http://dx.doi.org/10.1016/j.envsoft.2013.08.005
a b s t r a c t

Sensitivity analysis aims to characterize factors (i.e., model inputs) accounting for the amount of un-
certainty in model output. Input factors are usually assumed to be independent, which may lead to
incorrect conclusions. In this study, a combined sensitivity analysis approach, composed of the Sobol’ and
Importance Measurement (IM) methods, is applied on a pesticide environmental risk indicator (called
PURE), where main, interaction, and correlation effects (i.e., the effects of factor correlations on sensi-
tivity indices) are all addressed. PURE calculates pesticide risk scores for air, soil, groundwater, and
surface water based on pesticide properties and surrounding environmental conditions. The Sobol’
method calculates the first-order sensitivity index (Si) and the total-effect sensitivity index (STi) in
noncorrelated-factor setting to address the main and interaction effects; while the IM method calculates
Si in both noncorrelated-factor and correlated-factor settings to show the correlation effects. In the tested
case, the Si estimations in noncorrelated-factor setting by the Sobol’ and IM methods are very similar,
which not only cross-validates the main effect estimations by the two different methods, but also pro-
vides the common ground for combining the two methods to address both interaction and correlation
effects. In addition, the Si estimations in correlated-factor setting are relatively different from the ones in
noncorrelated-factor setting, which demonstrates that it is cautious to assume all factors are indepen-
dent in sensitivity analysis. Take the soil risk evaluation as an example, the positive correlation between
the chronic no-observed-effect concentration and acute 50%-lethal concentration to earthworms largely
increases the Si of the latter factor. The results of Si estimations show that the risk scores for air, soil,
groundwater, and surface water are most sensitive to the application rate of pesticide product, the
application rate of pesticide active ingredient, the organic carbon sorption constant, and the monthly
maximum daily water input, respectively. In summary, while this study enhances the understanding of
PURE, it also provides an option for investigating both interaction and correlation effects, and hence
promotes sensitivity analysis with factor-correlation structures in environmental modeling.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Pesticide use, along with fertilizer, newly bred crop cultivars,
and machinery, assures that agricultural production keeps pace
with global population growth. However, many pesticides are toxic,
persistent, and mobile. A large portion of the pesticides don’t reach
their targets but were transported or emitted to the environment,
posing risks to ecosystems and human health (Bolognesi, 2003).
Stakeholders seek available tools for assessing pesticide risk and
choosing appropriate low risk pest management practices.
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Pesticide risk is determined by pesticide exposure to nontargeted
organisms and the caused effects, but the risk value is difficult to
measure. Therefore, an indicator approach, providing information
on variables that are difficult to access (Bockstaller et al., 2008), is
appropriate for pesticide risk assessment. In a broad sense, pesti-
cide environmental risk indicators are also a group of environ-
mental models. Numerous pesticide risk indicators have been
developed around the world (Bockstaller et al., 2009), such as the
Environmental Impact Quotient (EIQ) based on simple combina-
tions of important variables (Kovach et al., 1992) and the Environ-
mental Potential Risk Indicator for Pesticides (EPRIP) derived from
simple simulation models for predicting pesticide concentrations
(Trevisan et al., 2009). Whether employing complex (e.g., �Sim�unek
et al., 2003) or simple simulation models in developing pesticide
risk indicators depends on data availability and temporalespatial
scales of assessment. While various types of pesticide
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environmental risk indicators exist, only one of 20 reviewed in-
dicators since year 2000 has been evaluated with sensitivity anal-
ysis. Nevertheless, sensitivity analysis is an essential step in
environmental model development (Jakeman et al., 2006) and one
of the important methods for analyzing uncertainty in the envi-
ronmental modelling process (Refsgaard et al., 2007).

Sensitivity analysis serves to characterize factors (i.e., model
input variables) accounting for the amount of uncertainty in model
output (Saltelli and Annoni, 2010), and the sensitivity analysis re-
sults are valuable to model diagnosis, interpretation, and parame-
terization, and prioritizing data collection (Berthiaume et al., 2010;
Confalonieri et al., 2010; Nossent et al., 2011; Pannell, 1997).
Sensitivity analysis methods can be classified into local and global
sensitivity analyses based on the techniques for exploring the input
factor space. Local sensitivity analysis exploits the factor space
around a specific point to study the effect of small variations of
factors on model output, and the result can be highly biased for
nonlinear models (Yang, 2011). On the contrary, global sensitivity
analysis exploits the entire factor space by simultaneously varying
all factors (Jacques et al., 2006; Lilburne and Tarantola, 2009).
Global sensitivity analysis techniques include (1) regression or
correlation based techniques, such as standardized regression co-
efficients and Spearman rank correlation coefficients; (2) elemen-
tary effect methods, including Morris (Campolongo et al., 2007;
Morris, 1991; Pujol, 2009), Latin Hypercube-OAT (van Griensven
et al., 2006), and winding stairs (Jansen, 1999), etc.; (3) meta-
modeling (emulation-based), such as high dimensional model
representation (HDMR) (Li et al., 2006, 2002; Rabitz et al., 1999)
and Gaussian emulators (Oakley and O’Hagan, 2004); and (4)
variance-based techniques, such as the Sobol’ method (Saltelli,
2002; Sobol’, 1993; Tarantola et al., 2006), Fourier amplitude
sensitivity test (FAST) (Cukier et al., 1973, 1975; McRae et al., 1982;
Saltelli et al., 1999), and the importance measurement (IM) method
(McKay, 1995). Variance-based sensitivity analysis techniques are
popular in environmental modeling (e.g., Nossent et al., 2011; Yang,
2011). In spite of the high computational expenses, variance-based
techniques are model independent, provide easy-interpretable
sensitivity indices, can capture interaction effects among factors,
and can handle qualitative and quantitative factors. Saltelli and
Annoni (2010) suggested using the Sobol’ method when input
factors are noncorrelated. Nevertheless, pesticide environmental
fate models, which are usually computational expensive, tended to
employ one-at-a-time sensitivity analysis methods (e.g., Dubus
et al., 2003; Ma et al., 2004).

Both interaction and correlation among input factors can affect
sensitivity analysis results. Interaction is a property of the model
while correlation is a property of input factors (Saltelli and
Tarantola, 2002). Interaction, or nonlinear effect, means that a
factor would act nonlinearly on the model output when its inter-
acted factors are at different values. In a case when factors are
correlated, fixing a factor would restrict the distributions of its
correlated factors, and hence the effect of the studied factor would
be carried over, which is referred to as the correlation effect here-
after. While interaction effects are usually studied, correlation ef-
fects are often ignored due to expensive computation cost (e.g.,
Nossent et al., 2011; Vezzaro and Mikkelsen, 2012). Nevertheless,
correlation commonly exists in real cases and may considerably
impact sensitivity analysis results (Saltelli and Tarantola, 2002).
Specifically in pesticide risk assessment, ignoring the existence of
correlation between input factors may have a significant effect on
the results of exposure assessments. Yet, to the authors’ knowledge,
none of the sensitivity analysis studies on pesticide risk assessment
or fate modelling have taken factor correlations into account,
except the regression-based sensitivity analysis study on three
pesticide leachingmodels (Soutter andMusy,1999). A fewmethods
were developed for sensitivity analysis on correlated factors, such
as the IM method mentioned above (McKay, 1995), which was
employed by Saltelli and Tarantola (2002) and recommended by
Saltelli and Annoni (2010). In addition, sensitivity analysis with
correlated input factors may also be analyzed by emulation-based
methods, such as the local polynomial technique (Da Veiga et al.,
2009), the State Dependent Parameter (SDP) method (Ratto et al.,
2007), and the Bayesian approach (Oakley and O’Hagan, 2004);
nevertheless, they are more difficult to implement.

This study aims to enhance the understanding of the PURE
(Pesticide Use Risk Evaluation) indicator (Zhan and Zhang, 2012)
and to draw more attention to correlated factors in sensitivity
analysis of environmentalmodels byapplying a combined variance-
based sensitivity analysis approach. PURE is able to evaluate site-
specific risk to air, soil, groundwater, and surface water from agri-
cultural pesticide use. It employs the risk ratio approach (i.e., the
ratio of the predicted environmental concentration to the toxicity)
under worst case scenarios, which is also applied by the European
Union System for the Evaluation of Substances (EUSES) suited for
initial and refined risk assessments on industrial chemicals and
pesticides (Vermeire et al., 2005). PURE considers the short- and
long-term exposure levels, rather than the environmental fate at
equilibrium status that for example is evaluated by the Equilibrium
Concentration (EQC) model (Mackay et al., 1996a, b, c).

The combined sensitivity analysis approach is composed of two
parts. The first part uses the Sobol’ method (Saltelli, 2002; Sobol’,
1993) to estimate the first-order sensitivity index or main effect
(Si) and the total sensitivity index or total effect (STi) in
noncorrelated-factor setting. The second part uses the IM method
(McKay, 1995) to estimate Si in both noncorrelated-factor and
correlated-factor settings. The specific objectives of this study are
(1) to identify sensitive factors in PURE, with associated interaction
or correlation effects; (2) to compare Si estimations and convergence
between the Sobol’ and the IM methods in noncorrelated-factor
setting; and (3) to investigate the applicability of the combined
approach to evaluating interaction and the correlation effects. The
results and conclusions of this study are anticipated to improve the
confidence in the PURE risk scores and to promote sensitivity
analysis with correlated input factors in environmental modeling.

2. Materials and methods

2.1. Model description

The PURE indicator (Zhan and Zhang, 2012) is composed of four
submodels, including air, soil, groundwater, and surface water, with
outputs of risk scores RA, RS, RG, and RW, respectively. A stepwise
procedure is employed for each submodel except for the air
(Fig. A.1). First, RA is based on the multiplication of the pesticide
application rate (RATE), the emission potential (EP) that is a pesti-
cide product property for estimating potential volatile organic
compound (VOC) emissions by the California Department of
Pesticide Regulation (CEPA, 2007), and the application method
adjustment factor (AMAF). Second, RS is the maximum of the short-
term and long-term risk scores for soil, which are derived from the
ratios of the predicted short-term (PECSS) and long-term (PECSL)
pesticide concentrations in topsoil to the acute and chronic pesti-
cide toxicities to earthworms, respectively. PECSS is contributed by
the amount of the pesticide reaching ground right after the pesti-
cide application, while PECSL is the average concentration in topsoil
considering the decay of PECSS during 21 days (the typical period for
measuring the chronic toxicity) after the application. Third, RG is
based on the ratio of the predicted pesticide concentration leaching
to groundwater (PECG) to the acceptable daily intake (ADI). PECG is
calculated by using an adapted version of the attenuation factor
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(AF) method, which was originally proposed by Rao et al. (1985) to
indicate pesticide degradation, convection, and dispersion pro-
cesses in soil. Finally, RW, similar to RS, is themaximum of the short-
term and long-term risk scores for surface water, which are based
on the ratios of the predicted short-term (PECWS) and long-term
(PECWL) pesticide concentrations loaded to surface water to the
maximum acute and chronic pesticide toxicities to aquatic organ-
isms (including fish, Daphnia, and algae), respectively. PECWS is
contributed by the pesticide drift and runoff processes. The drift
process is modeled using the Drift Calculator (FOCUS, 2001), while
the runoff calculation relies on the SCS curve number method (SCS,
1972). PECWL is the average concentration during 21 days after the
application. In this study, sensitivity analysis is performed on each
submodel separately, and for preserving the output integrity the
risk scores are not truncated to [0, 100] (the truncation is a post-
processing step in PURE to make the results more intuitive) (Zhan
and Zhang, 2012).
2.2. Factors for sensitivity analysis

The distribution parameters (Table A.1) and the correlation co-
efficients (Table A.2) of the input factors for each submodel are
summarized from the built-in database in PURE, which was
developed to evaluate agricultural pesticide risk in California (one
of the world’s most agricultural productive regions). This database
contains the properties of registered pesticides and the environ-
mental conditions of agricultural areas in California from 1990 to
2010 (detailed information can be found in Appendix A). The cor-
relation between EP and RATE (r¼�0.175) is not listed in Table A.2a
to simplify the table layout. The hydrological group (HG), crop type
(CT), the application month (AM), and the application method
adjustment factor (AMAF) are discrete variables, and all other fac-
tors are continuous variables. The majority of factors are log-
normal distributed, and the rest of the factors are of normal,
exponential, or uniform distributions. The factor ranges are utilized
in truncated sampling. More realistic samples would be obtained
through considering factor ranges and correlation structures
(Beulke et al., 2006).
2.3. Sensitivity analysis

Variance-based sensitivity analysis technique is employed to
perform sensitivity analysis on each submodel of PURE. This tech-
nique outputs sensitivity indices ranging from 0 to 1, where a larger
value means higher sensitivity. While various types of sensitivity
indices can be calculated by this technique, the first order sensi-
tivity index or main effect (Si) and the total sensitivity index or total
effect (STi) are the most important and commonly referred (Yang,
2011). Si denotes the effect of a factor Xi alone, while STi denotes
the effects of Xi and all its interactions; consequently (STi � Si) in-
dicates the interaction effects of Xi with other factors in the model.
Intuitively, Si is the expected reduction in variance proportionwhen
Xi is fixed (so-called the Factors Prioritization setting), and STi is the
expected remaining variance proportion when all the factors but Xi

are fixed (so-called the Factors Fixing setting) (Saltelli, 2004; Saltelli
and Annoni, 2010). In this study, a factor whose Si is higher than
0.05 (intuitively accounting for more than 5% model variability) is
considered sensitive.

For a function Y ¼ f(x1,.,xk), Si is defined as follows (Saltelli and
Annoni, 2010):

Si ¼
V ½E½Y jXi��

V ½Y � (1)
where V[Y] is the unconditional total variance (Eq. (2)), and V[E
[YjXi]] is the variance of conditional expectation on Xi (Eq. (5)),
which requires an inner multi-dimensional integral to calculate E
[YjXi] followed by an outer one-dimensional integral to calculate
the variance.

V ½Y � ¼ E
h
Y2

i
� E2½Y � (2)

where E[Y] is the unconditional expectation (Eq. (3)), and E[Y2] is
calculated by Eq. (4).
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In addition, STi is defined as follows (Saltelli and Annoni, 2010):

STi ¼
E½V ½Y jX�i��

V ½Y� (6)

where X�i represents all factors but Xi, and E[V[YjX�i]] is the
expectation of conditional variance of X�i (Eq. (7)), which involves
an inner one-dimensional integral for calculating V[YjX�i] and an
outer multi-dimensional integral for calculating the expectation.
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Although the above complex integrals can be approximated via
Monte Carlo methods with multi-dimensional samples generated
by the Markov Chain Monte Carlo (MCMC)method, this brute-force
approach is computationally expensive and slow to converge.
Therefore, the more efficient methods including the Sobol’ (Saltelli,
2002) and the importance measurement (IM) method (McKay,
1995) are employed instead. In this study, the Sobol’ method cal-
culates Si and STi in noncorrelated-factor setting to address the
main and interaction effects, while the IM method calculates Si in
both noncorrelated-factor and correlated-factor settings to address
the correlation effects. With the Sobol’ method,

P
Si and (STi � Si)

suggest the interaction effects among the factors in each submodel.
Using the IMmethod, (Si,C� Si,NC) indicates the correlation effect for
each factor, where Si,C and Si,NC are Si in noncorrelated-factor and
correlated-factor settings, respectively. The numerical experiment
where the Si in noncorrelated-factor setting are calculated by both
the Sobol’ and IM methods allows for not only comparing the two
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methods in noncorrelated-factor setting but also removing the
artificial effect brought by method difference on (Si,C � Si,NC) if Si,NC
is calculated by the IM method while Si,C is calculated by the Sobol’
method. Finally, it should be noted that the Sobol’ method is
inapplicable in correlated-factor setting while the IM method can
only calculate Si, so the interaction effects in correlated-factor
setting are not analyzed in this study. Although the SDP method
(Ratto et al., 2007) can efficiently calculate Si plus interaction terms
up to third order, the estimates of STi may be biased and this
method is difficult to implement (Gatelli et al., 2009; Yang, 2011).

2.3.1. Sobol’ sensitivity analysis
In noncorrelated-factor setting the Sobol’ method can calculate

Si, STi, and other high-order sensitivity indices, e.g., second-order
interaction effect Sij, based on the decomposition of total uncon-
ditional variance (V[Y]) (Saltelli, 2002):

V ½Y� ¼
X
i

Vi þ
X
i

X
j>i

Vij þ/þ V12.k (8)

where Vi ¼ V[E[YjXi]],

Vij ¼ V
�
E
�
Y jXi;Xj

��� Vi � Vj (9)

V12:::k ¼ V ½E½YjX1;X2;.;Xk�� (10)

At this point, Eq. (1) is applied to calculate Si. Moreover, the sum
of Sið

P
i
SiÞ can tell whether the model is additive. If no interaction

effect exists, V ½Y� ¼ P
i
Vi, and consequently

P
i
Si ¼ 1. In other

words,
P
i
Si < 1 indicates the model is nonadditive. It is easily

derived that
P
i
Si cannot be larger than 1 in noncorrelated-factor

setting. However, due to numerical errors, the estimations of
P
i
Si

may be a slightly deviated from 1 evenwhen the model is additive.
In this study, when

P
i
Si˛½0:95;1:05�, the model is considered ad-

ditive. To further identify which factors have interaction effects, STi
is an efficient indicator, which can be delineated as follows:

STi ¼ Si þ
X
j

Sij þ.þ S12.k (11)

Sij ¼
Vij

V
(12)

S12.k ¼ V12.k

V
(13)

where Sij is the second order sensitivity index showing the unique
interaction effect between Xi and Xj.

The Sobol’ method (Sobol’, 1993) implements a substituted-
column sampling plan to calculate sensitivity indices efficiently.
(2kþ 1)*Nmodel runs are required to calculate Si and STi, where k is
the number of indices to estimate, and N is the base sample size.
Saltelli (2002) refined the computation procedure and reduced the
number of model runs to (k þ 2)*N in calculating Si and STi. More-
over, the bootstrap technique (Efron and Tibshirani, 1994) can be
used to estimate confidence intervals for sensitivity indices.

2.3.2. Importance measurement (IM)
In correlated-factor setting the importance measurement (IM)

method with the replicated Latin Hypercube Sampling (r-LHS) plan
(McKay, 1995) calculates Si, which requires N*R model runs, where
N is the base sample size and R is the number of replications. One
advantage of r-LHS is that the number of model runs is independent
of the number of factors. Si is also calculated by Eq. (1), while the
unconditional total variance is calculated as follows.

V ½Y � ¼ 1
N$R

X
n

X
r

ðynr � E½Y �Þ2 (14)

where ynr is the model output when using sample n of replicate r,
and E[Y] is the unconditional mean (Eq. (15)). It should be noted
that for LHS, the N-divided sum of squares is preferred to the
(N�1)-divided one because the former generates unbiased esti-
mates for simple random sampling (McKay, 1995).

E½Y � ¼ 1
N$R

X
n

X
r

ynr (15)

The variance of conditional expectation (Vi) is calculated as
follows:

Vi ¼
1
N

X
n

ðE½YjXi ¼ Xin� � E½Y �Þ2

� 1
N$R2

X
n

X
r

ðynr � E½Y jXi ¼ Xin�Þ2
(16)

where E[YjXi ¼ Xin] is the conditional mean when using Xi value in
sample n (Eq. (17)).

E½Y jXi ¼ Xin� ¼
1
R

X
r

yðiÞnr (17)

where y(i)nr is the model output in replicate rwhen using Xi value in
sample n.

2.4. Sampling

The sample generation is based on the factor distribution pa-
rameters (Table A.1) and correlation coefficients (Table A.2). In
noncorrelated-factor setting the Sobol’ quasi-random sequence
(Sobol’, 1967, 1976) is used to generate a set of samples for the
Sobol’ method, while r-LHS is used to generate a set of samples for
the IM method. The original samples generated by r-LHS are non-
correlated. In correlated-factor setting r-LHS is again used to
generate another set of samples, which are then adjusted to a set of
correlated samples with the required correlation structure
(Table A.2) by using the Iman and Conover’s (1982) method.

Asmentionedearlier, the Sobol’method requires (kþ2)*Nmodel
runs, and the IM method demands N*Rmodel runs. The submodels
of the air, soil, groundwater, and surfacewater risk assessments have
three, eight, 14, and 16 factors, respectively. For the Sobol’ method,
the base sample size is set to 2000 for each submodel, resulting in
10,000, 20,000, 32,000, and 36,000model runs for these submodels
(in the same order as above), respectively. For the IM method, 20
replications are sampled in r-LHS, and the number ofmodel runs for
each submodel is set to the same value as the Sobol’ method.
Therefore, the IM method employs 500, 1000, 1600, and 1800 base
samples for these submodels (in the same order as above), respec-
tively. To inspect the convergence of the estimations, the base
sample sizes gradually increase in 100 uniform steps.

2.5. Programming aspects

PURE is coded in Java, while all the sensitivity analysis ap-
proaches are programmed in R, a free and versatile software
environment for scientific computation (R Development Core



Table 1
Sensitivity analysis results for air risk evaluation.a

Sobol’ Importance measurementb

Si 95% CI Rank STi 95% CI Rank Si,C Rank Si,NC Rank

RATE 0.538 (0.473, 0.599) 1 0.537 (0.492, 0.578) 1 0.463 1 0.528 1
EP 0.363 (0.310, 0.406) 2 0.358 (0.323, 0.399) 2 0.254 2 0.347 2
AMAF 0.125 (0.100, 0.146) 3 0.121 (0.098, 0.142) 3 0.150 3 0.126 3
Sum 1.025 1.016 0.866 1.001

a The variable definitions are listed in Table A.1.
b Si,C: Si in correlated-factor setting; Si,NC: Si in noncorrelated-factor setting.
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Team, 2013). The third-party R packages referenced in this study
are listed as follows: (1) sensitivity (Pujol, 2012) to perform the
Sobol’ sensitivity analysis; (2) randotoolbox (Dutang and Savicky,
2012) to generate the Sobol’ quasi-random sequences; (3) lhs
(Carnell, 2012) to carry out Latin hypercube sampling; (4) mc2d
(Pouillot and Delignette-Muller, 2010) to add correlations to non-
correlated samples; (5) a truncated sampling script by Nadrajah
and Kotz (2006); and (6) doSnow (Revolution Analytics, 2012a)
and foreach (Revolution Analytics, 2012b) for parallel computation.
In addition, the IM method with r-LHS is programmed in R.

3. Results and discussion

The estimations of Si and STi for each submodel of PURE are listed
in Tables 1e4, while the evolutions of these estimations are shown
in Figs. 1e3. For Si in noncorrelated-factor setting, the point esti-
mations are generally similar between the Sobol’ and IM methods,
and the IM’s point estimations all fall in the Sobol’s 95% confidence
intervals (CI). The interaction and correlation effects are derived
from the estimations of Si and STi. It should be noted that the ranks
for the insensitive (Si < 0.05) or slightly-sensitive (Si slightly larger
than 0.05) factors are less accurate and should be used with caution
in that their values are relatively unsteady due to numerical errors.
Nevertheless, for any pair of these factors, if both the Sobol’ and IM
methods give the same relative ranks or if their Si CI do not overlap,
then the relative ranks are considered reliable.

3.1. Sensitivity analysis of the air risk assessment

In noncorrelated-factor setting the air risk score (RA), indicating
the potential VOC emission amount, is sensitive to the pesticide
application rate (RATE), the emission potential (EP), and the appli-
cation method adjustment factor (AMAF) (Table 1). All the point
estimations of Si by the IM method fall in the 95% confidence in-
tervals (CI) estimated by the Sobol’ method, and the point esti-
mations of Si by the Sobol’ and IM methods are very similar. Using
Table 2
Sensitivity analysis results for soil risk evaluation.a

Sobol’

Si 95% CI Rank STi 95%

BD 0.004 (0.000, 0.008) 6 0.000c (�0
TM 0.004 (�0.004, 0.012) 6 0.000c (�0
DTSO 0.012 (�0.014, 0.039) 5 0.027 (�0
LCW 0.057 (0.014, 0.101) 3 0.068 (0.0
NOECW 0.183 (0.116, 0.254) 2 0.178 (0.1
RATEAI 0.714 (0.550, 0.857) 1 0.696 (0.5
CT 0.002 (�0.014, 0.018) 8 0.007 (�0
AM 0.057 (0.017, 0.100) 3 0.056 (0.0
Sum 1.034 1.027

a The variable definitions are listed in Table A.1.
b Si,C: Si in correlated-factor setting; Si,NC: Si in noncorrelated-factor setting.
c The value is slightly smaller than 0 (due to numerical errors), so it is reset to 0.
the IM method, the Si for RATE, EP, and AMAF are 0.528, 0.347, and
0.126, respectively. With the Sobol’ method, the Si for these factors
(in the same order) are 0.538 (CI: [0.473, 0.599]), 0.363 (CI: [0.310,
0.406]), and 0.125 (CI: [0.100, 0.146]), respectively. In our literature
search, this study is the first global sensitivity analysis on the EP-
based air risk assessment method. The sensitivity ranks of the three
factors are the same as the ranks of their sampling variations. RATE
that is of lognormal distribution and ranges across nine orders of
magnitude (from 1.12E-7 to 8.73E2; Table A.1) gets the highest Si.
RATE provides the basic mass for VOC emission. A low RATE results
in a low VOC emission, and a high RATE is necessary for a high VOC
emission. In addition, EP, as an exponentially distributed variable
ranging from 0 to 100%, is in the middle of the sensitivity ranking.
EPmeasures the portion of the pesticidemass that potentially emits
to the air (all is assumed to be VOC) under a standard condition,
which highly affects the VOC emission quantity. Finally, AMAF that
has 17 discrete levels ranging from 9% to 100% (Table A.1) obtains
the lowest Si. Derived from long-term field experimental data,
AMAF was used to adjust EP based on the pesticide application
method, and its effect on the VOC emission quantity is lower than
RATE and EP.

Compared with the Sobol’method, the IM method has a shorter
burn-in period but provides less stable estimations after a decent
number of model runs (Fig. 1a). The IM method starts oscillating
around the equilibrium statuses at fewer than 2000 model runs,
while the Sobol’ method approaches the equilibrium statues after
around 4000 model runs. When estimating Si only, the sampling
strategy used by the Sobol’ method (i.e., substituted column sam-
pling strategy) is less efficient than the sampling strategy employed
by the IM method (i.e., permuted column sampling strategy),
because the former only utilizes 2N of the total of (k þ 1)*N model
runs (Morris et al., 2008). Moreover, in this study the Sobol’method
requires N extra runs for simultaneously estimating STi. On the
other hand, the evolution curves of the Sobol’method are smoother
than the ones of the IM method, indicating the estimations by the
Sobol’method are more accurate at large sample size thanks to the
Importance Measurementb

CI Rank Si,C Rank Si,NC Rank

.007, 0.001) 7 0.004 6 0.001 8

.010, 0.007) 7 0.002 7 0.006 6

.004, 0.054) 5 0.008 5 0.019 5
21, 0.115) 3 0.158 3 0.042 4
03, 0.247) 2 0.234 2 0.146 2
59, 0.836) 1 0.671 1 0.696 1
.009, 0.024) 6 0.002 7 0.005 7
11, 0.096) 4 0.050 4 0.055 3

1.129 0.969



Table 3
Sensitivity analysis results for groundwater risk evaluation.a

Sobol’ Importance Measurementb

Si 95% CI Rank STi 95% CI Rank Si,C Rank Si,NC Rank

KOC 0.429 (0.352, 0.501) 1 0.585 (0.513, 0.646) 1 0.441 1 0.400 1
KH 0.023 (0.001, 0.047) 5 0.040 (0.020, 0.059) 5 0.112 3 0.016 5
DTSA 0.296 (0.230, 0.360) 2 0.476 (0.416, 0.537) 2 0.280 2 0.263 2
DTSO 0.000 (�0.001, 0.001) 14 0.000 (�0.001, 0.000) 12 0.019 6 0.000c 13
ADI 0.004 (�0.001, 0.008) 9 0.002 (0.000, 0.004) 11 0.051 4 0.003 10
BD 0.008 (�0.002, 0.016) 7 0.010 (0.001, 0.018) 8 0.006 9 0.000 13
OM 0.032 (0.005, 0.059) 4 0.080 (0.052, 0.108) 4 0.012 7 0.029 4
CC 0.006 (�0.006, 0.018) 8 0.012 (0.000, 0.022) 7 0.001 13 0.006 7
L 0.060 (0.027, 0.095) 3 0.130 (0.097, 0.161) 3 0.044 5 0.050 3
Q 0.015 (�0.001, 0.031) 6 0.024 (0.007, 0.041) 6 0.012 7 0.013 6
T 0.002 (�0.005, 0.009) 10 0.005 (�0.003, 0.012) 9 0.001 13 0.004 9
RATEAI 0.001 (�0.005, 0.007) 11 0.004 (0.001, 0.007) 10 0.005 10 0.006 7
CT 0.001 (0.000, 0.001) 11 0.000 (�0.001, 0.000) 12 0.002 11 0.001 12
AM 0.001 (0.000, 0.003) 11 0.000 (�0.001, 0.001) 12 0.002 11 0.003 10
Sum 0.878 1.368 0.989 0.792

a The variable definitions are listed in Table A.1.
b Si,C: Si in correlated-factor setting; Si,NC: Si in noncorrelated-factor setting.
c The value is slightly smaller than 0 (due to numerical errors), so it is reset to 0.
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Sobol’ quasi-random sequence (Sobol’, 1967, 1976), which is a low-
discrepancy sequence and accelerates convergence in estimating
integrals.

The sensitivity analysis results in noncorrelated-factor setting
show that no interaction effect exists in the air risk evaluation,
according to

P
Si and (STi � Si) by the Sobol’ method (Table 1).

P
Si

(¼1.025) is very close to 1, suggesting the entire process is additive.
Furthermore, the STi estimations for RATE, EP, and AMAF are 0.537
(CI: [0.492, 0.578]), 0.357 (CI: [0.323, 0.399]), and 0.121 (CI: [0.098,
0.142]); the STi estimations converge to steady status after about
3000 model runs (Fig. 2a). STi is very close to Si for each of these
factors. For example, the Si for RATE is 0.538 (CI: [0.492, 0.578]), and
hence the (STi � Si) is �0.001. The negligible differences (due to
numerical errors) support the finding that none factor has inter-
action effect in the air risk evaluation.

In correlated-factor setting the Si estimations by the IM method
for RATE, EP, and AMAF are 0.463, 0.254, and 0.150, respectively
(Table 1). The Si estimations become relatively stable after 4000
model runs (Fig. 3a). A negative correlation between RATE and EP
(r ¼ �0.175), reflecting the fact that a pesticide with higher EP
Table 4
Sensitivity analysis results for surface water risk evaluation.a

Sobol’

Si 95% CI Rank STi 95%

KOC 0.004 (�0.002, 0.009) 5 0.005 (0.0
DTSO 0.004 (�0.001, 0.007) 5 0.001 (�0
DTW 0.001 (�0.001, 0.004) 9 0.000 (0.0
LECA 0.004 (�0.002, 0.009) 5 0.005 (0.0
NOECA 0.004 (�0.003, 0.012) 5 0.010 (0.0
BD 0.000 (0.000, 0.000) 12 0.000 (0.0
OM 0.000 (�0.001, 0.002) 12 0.000 (0.0
SC 0.000 (0.000, 0.000) 12 0.000 (0.0
SL 0.000c (�0.013, 0.008) 12 0.015 (0.0
D 0.014 (0.002, 0.023) 3 0.067 (0.0
RM 0.536 (0.417, 0.639) 1 0.810 (0.7
TM 0.000 (�0.001, 0.002) 12 0.000 (0.0
RATEAI 0.008 (0.002, 0.015) 4 0.007 (0.0
HG 0.095 (0.037, 0.153) 2 0.300 (0.2
CT 0.001 (0.000, 0.002) 9 0.000 (0.0
AM 0.001 (0.000, 0.003) 9 0.000 (0.0
Sum 0.671 1.220

a The variable definitions are listed in Table A.1.
b Si,C: Si in correlated-factor setting; Si,NC: Si in noncorrelated-factor setting.
c The value is slightly smaller than 0 (due to numerical errors), so it is reset to 0.
tends to be applied less, is introduced in the sensitivity analysis
sample generation. Although the sensitivity ranks remain the
same as the ones in noncorrelated-factor setting, the Si for RATE
and EP decrease considerably while the Si for AMAF increases
slightly. The negative correlation between RATE and EP induces
counteractive effect against each other, which can be considered
as negative interaction effect emerging in the sampling process.
Additionally, the negative correlation between RATE and EP has a
side effect on the Si for AMAF, i.e., the denominator decreases to a
larger extent than the nominator does (Eq. (1)) and hence leads to
a higher Si. Finally,

P
Si (¼0.866) becomes much lower than 1,

which is due to interaction effects resulting from the correlation
between RATE and EP. As stated in the introduction, interaction
and correlation effects are properties of the model and the input
factors, respectively (Saltelli and Tarantola, 2002). As the sensi-
tivity analysis results in noncorrelated-factor setting have already
shown there is no interaction effect in the air risk assessment, the
additive property of the model should remain in correlated-factor
setting. Therefore, the parameter correlations play a role in
decreasing

P
Si.
Importance Measurementb

CI Rank Si,C Rank Si,NC Rank

03, 0.007) 7 0.002 13 0.006 6
.001, 0.003) 9 0.005 7 0.004 9
00, 0.001) 10 0.005 7 0.003 12
04, 0.007) 7 0.009 6 0.007 5
07, 0.012) 5 0.013 4 0.011 4
00, 0.000) 10 0.001 15 0.004 9
00, 0.001) 10 0.002 13 0.005 7
00, 0.000) 10 0.003 11 0.003 12
00, 0.027) 4 0.005 7 0.002 16
34, 0.096) 3 0.026 3 0.021 3
41, 0.882) 1 0.607 1 0.605 1
00, 0.001) 10 0.004 10 0.003 12
05, 0.009) 6 0.012 5 0.005 7
43, 0.357) 2 0.090 2 0.090 2
00, 0.000) 10 0.000 16 0.003 12
00, 0.001) 10 0.003 11 0.004 9

0.786 0.775



Fig. 1. Evolution of first-order sensitivity indices (Si) by the Sobol’ and importance measurement (IM) methods in noncorrelated-factor setting for (a) air, (b) soil, (c) groundwater,
and (d) surface water.
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3.2. Sensitivity analysis of the soil risk assessment

Table 2 shows that in noncorrelated-factor setting the soil risk
score (RS) is sensitive to the following factors: the application rate
of pesticide active ingredient (RATEAI), the chronic no-observable-
effect concentration to earthworms (NOECW), the application
month (AM), and the acute 50%-lethal concentration to earthworms
(LCW). Although all the point estimations of Si by the IMmethod fall
in the CI of Si by the Sobol’ method, the point estimations of Si by
the two methods are slightly different. The Si estimations by the IM
method for RATEAI, NOECW, AM, and LCW are 0.696, 0.146, 0.055, and
0.042, respectively. While, the Si estimations by the Sobol’ method
for these factors (in the same order) are 0.714 (CI: [0.550, 0.857]),
0.183 (CI: [0.116, 0.254]), 0.057 (CI: [0.017, 0.100]), and 0.057 (CI:
[0.014, 0.101]), respectively. It is noted that the Sobol’ result shows
LCW is a slightly sensitive factor while the IM result suggests not,
although its Si is only a little lower than 0.05 (the predefined
sensitivity threshold). These sensitive factors are considered
important empirically. The soil risk evaluation doesn’t have pesti-
cide off-site transportation, which is consistent with the finding
that RATEAI is the most sensitive factor. In addition, AM affects the
soil risk via the crop interception rate (fint), which could largely
change the portion of pesticides reaching soil. For instance, fint for
orchards is 78% in the growing season and 44% in dormant season
(settings in PURE), resulting in 34% difference in the amount of
pesticide exposure. Besides exposure amount, pesticide toxicity to
the organisms in soil (indicated by earthworms) is a sensitive factor
in soil risk evaluation. Risk emerges only when both exposure and
toxicity take effect. It’s unexpected that DTSO is an insensitive factor,
which has a high impact on long-term pesticide concentration in
topsoil. There are very few sensitivity analysis studies on modeling
pesticide concentration in soil. In a local sensitivity analysis study
covering pesticide concentration in soil (Ma et al., 2004), DTSO is
sensitive in predicting pesticide concentration in topsoil. The result
that DTSO is insensitive in PURE is probably because the preset
exposure period (21 days) is insufficiently long to reflect the
degradation effect on long-term concentration. Further investiga-
tion is required to resolve this issue.

In estimating the Si for the sensitive factors in the soil risk
evaluation, the Sobol’ method has a longer burn-in period than the
IM method does (Fig. 1b). The Sobol’ method takes about 10000
model runs to reach the equilibrium status while the IM method
takes about 2500 model runs. The difference between the burn-in
periods is mainly due to the different sampling strategies



Fig. 2. Evolution of the total effect sensitivity indices (STi) by the Sobol’ method in noncorrelated-factor setting for (a) air, (b) soil, (c) groundwater, and (d) surface water.
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employed by the two methods, which were discussed in depth in
Section 3.1. In addition, the evolution line of the Si for NOECW drawn
by the Sobol’method is consistently above the one drawn by the IM
method (Fig. 1b). The estimations by the IM method may be biased
in that the sampling strategy of random column permutation re-
sults in imperfect mixing of the input factors, i.e., no two input
values paired together in one array also were paired in another
array (Castaings et al., 2012; Morris et al., 2008).

In noncorrelated-factor setting, it is found that the soil risk
evaluation is an additive process as

P
Si (¼1.034) by the Sobol’

method is very close to 1 (Table 2). Moreover, the STi estimations for
RATEAI, NOECW, AM, and LCW are 0.696 (CI: [0.559, 0.836]), 0.178 (CI:
[0.103, 0.247]), 0.056 (CI: [0.011, 0.096]), and 0.068 (CI: [0.021,
0.115]) (Table 2). The STi estimations converge at about 10000
model runs (Fig. 2b). The STi estimation is very close to the Si esti-
mation for each sensitive factor, which indicates none of the factors
has interaction effect.

In correlated-factor setting the Si estimations by the IM method
for RATEAI, NOECW, LCW, and AM are 0.671, 0.234, 0.158, and 0.050,
respectively (Table 2). The Si estimations converge at about 1000
model runs (Fig. 3b). Compared with the Si estimations for LCW
(0.042) and NOECW (0.146) in noncorrelated-factor setting, the Si
estimations for the two factors largely increase and even

P
Si
(¼1.129) becomes much higher than 1, which are induced by the
high positive correlation between LCW and NOECW (r ¼ 0.65;
Table A.2a). As LCW andNOECW are both positively related to the soil
risk, the positive correlation between LCW and NOECW carries over
the effect of one of them to the other. When an insensitive factor is
correlated with another insensitive factor, their correlation effects
reflected in the change of Si are very limited. For instance, while the
insensitive factors, the bulk density (BD) and TM, are positively
correlated (r¼ 0.19; Table A.2b), their Si estimations are consistently
low in both noncorrelated-factor and correlated-factor settings.

3.3. Sensitivity analysis of the groundwater risk assessment

The groundwater risk score (RG) is sensitive to the organic car-
bon sorption constant (KOC), the anaerobic half-life in soil (DTSA),
and the groundwater depth (L) (Table 3). In noncorrelated-factor
setting the Si estimations for these factors are consistent between
the Sobol’ and IMmethods.With the IMmethod, the Si for KOC,DTSA,
and L are 0.400, 0.263, and 0.050, respectively. Using the Sobol’
method, the Si for these factors (in the same order) are 0.429 (CI:
[0.352, 0.501]), 0.296 (CI: [0.230, 0.360]), and 0.060 (CI: [0.027,
0.095]), respectively. Fig. 1c shows that the Si estimations by the IM
method converge much faster (around 1000 model runs) than by



Fig. 3. Evolution of the first-order sensitivity indices (Si) by the importance measurement (IM) in correlated-factor setting for (a) air, (b) soil, (c) groundwater, and (d) surface water.
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the Sobol’method (greater than 25,000 model runs), and the Sobol’
lines are generally above the IM lines.

The sensitivity rankings conform to the findings of groundwater
monitoring and some other sensitivity analysis studies. Pesticide
movement in soil towards groundwater is generally slow, which
may take 3e33 years (Spurlock et al., 2000) and involves three
main processes, including adsorption, convection, and degradation.
The adsorption process retards pesticide movement as a pesticide
compound sorbs to soil particles, and the adsorption strength is
indicated by KOC in PURE. The degradation process reflects the
persistence of pesticides in soil, which is indicated by DTSA in PURE.
In a national groundwater survey, pesticides were commonly
detected in shallow groundwater regions, and the detection fre-
quencies were highly correlated with pesticide KOC and half-life
(Kolpin et al., 2000). In addition, the groundwater 6800 list, a
pesticide regulation list by California Department of Pesticide
Regulation (CEPA, 2012), also considers KOC and DTSA as important
indicator factors to determine whether a pesticide is of high risk to
groundwater. Moreover, in a few sensitivity analysis studies on
pesticide leaching models (e.g., Cheviron and Coquet, 2009; Dubus
et al., 2003; Soutter andMusy,1999;Wolt et al., 2002), the pesticide
leaching to groundwater was found to be consistently sensitive to
the adsorption and degradation processes, even though those
sensitivity analysis studies tested different models and used
different sensitivity analysis techniques. For example, Dubus et al.
(2003) compared the sensitivity of four models (i.e., PELMO,
PRZM, PESTLA, and MACRO) by using a local sensitivity analysis
approach, while Cheviron and Coquet (2009) analyzed the
HYDRUS-1D model by using a one-group-at-a-time sensitivity
analysis method. However, none of those sensitivity analysis
studies implemented global sensitivity analysis or analyzed inter-
action effects, and only Soutter and Musy (1999) took factor cor-
relation into account in their study.

In noncorrelated-factor setting it is found that the groundwater
risk evaluation is a nonadditive process.

P
Si (¼0.878) by the Sobol’

method is much lower than 1 (Table 3), demonstrating the entire
process is nonadditive. Specific interactions are detected by
examining (STi � Si) for each factor. The STi estimations for KOC, DTSA,
and L are 0.585 (CI: [0.513, 0.646]), 0.476 (CI: [0.416, 0.537]), and
0.130 (CI: [0.097, 0.161]), respectively. Fig. 2c shows that the STi
estimations converge at around 20000model runs. The (STi � Si) for
KOC, DTSA, and L are 0.156 (¼0.585 � 0.429), 0.18 (¼0.476 � 0.296),
0.07 (¼0.130 � 0.060), respectively, indicating that KOC and DTSA
have high interaction effects with each other.
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In correlated-factor setting the Si estimations by the IM method
for KOC, DTSA, and L (the sensitive factors in noncorrelated-factor
setting) are 0.441, 0.280, and 0.044, respectively (Table 3), which
converge at fewer than 10,000 model runs (Fig. 3c). The Si esti-
mations for KOC and DTSA increase a little when compared with the
ones in noncorrelated-factor setting, while the Si estimation for L
decreases a bit. Additionally, the Henry’s law constant (KH) and the
acceptable daily intake (ADI), which are insensitive factors in
noncorrelated-factor setting (Si ¼ 0.016 and 0.003, respectively),
become sensitive in correlated-factor setting (Si ¼ 0.112 and 0.051,
respectively) (Table 3). These changes are caused by their correla-
tions with the sensitive factors, i.e., KOC and DTSA. The correlation
structure here is more complex than the ones in the air and soil risk
evaluations. First, KOC tends to have a negative effect on the
groundwater risk, i.e., increasing KOC tends to decrease the
groundwater risk by enhancing the adsorption strength. Bridged by
the positive correlation with KOC (r ¼ 0.21) (Table A.2a), KH gains a
negative effect on the groundwater risk; a negative effect generates
another negative effect via a positive correlation. Second, DTSA
tends to have a positive effect on the groundwater risk, i.e.,
increasing DTSA tends to increase the groundwater risk via slowing
the degradation process. Through the negative correlation with
DTSA (r ¼ �0.29) (Table A.2a), KH gains another negative effect on
the groundwater risk; a positive effect results in a negative effect
via a negative correlation. Therefore, the negative effect of KH on the
groundwater risk is enlarged through restricting the sampling
distributions of both KOC and DTSA. Similarly, the increase of the Si
for ADI is mainly because ADI has opposite correlations with KOC

(r ¼ �0.11) and DTSA (r ¼ 0.27) (Table A.2a).

3.4. Sensitivity analysis of the surface water risk assessment

In noncorrelated-factor setting our finding is that the surface
water risk score (RW) is sensitive to the monthly maximum daily
water input (RM) and the hydrology group (HG) (Table 4). The Si
point estimations for the two factors by the Sobol’ and IM methods
are slightly different, though all the point estimations by the latter
fall in the CI estimations by the former. With the IM method, the Si
estimations for RM and HG are 0.605 and 0.090, respectively. Using
the Sobol’ method, the Si estimations for RM and HG are 0.536 (CI:
[0.417, 0.639]) and 0.095 (CI: [0.037, 0.153]), respectively. The Si
estimations by the Sobol’ method converge at about 20,000 model
runs while the Si estimations by the IM method converge at about
5000 model runs; for RM the Sobol’ line lay below the IM line after
5000 model runs (Fig. 1d).

The result that RM and HG are sensitive factors is consistent with
the knowledge and sensitivity analysis studies on pesticide trans-
port to surface water, which mainly includes surface runoff, spray
drift, and lateral flow. The first two pathways are taken into account
by the PURE indicator. Spray drift plays an important role when
farmlands are close to surface water, while surface runoff is the
dominant pathway in general. It is considered that pesticide loss via
surface runoff is primarily determined by hydrological factors
rather than pesticide properties (van der Werf and Zimmer, 1998).
RM and HG, as the two major hydrological factors in PURE, deserve
high sensitivity weightings. In California, USA, pesticide runoff
mostly occurs in the irrigation season or storm days during the
dormant season (Luo and Zhang, 2010), when a large amount of
water input (including precipitation and irrigation) is essential in
transporting pesticide to surface water. Ma et al. (2004) carried out
a local sensitivity analysis on the RZWQM model and found the
pesticide runoff load in surface water runoff was most sensitive to
rainfall. Therefore, increasing irrigation efficiency and decreasing
surface water runoff (such as by using a field-edge pond) are
important mitigation method to reduce pesticide surface water
risk. The second most important factor, HG, determines the curve
number (CN), for estimating the amount of surface water runoff,
with the land use type. Several sensitivity analysis studies on the
pesticide simulation models, employing the CNmethod to estimate
surface water runoff, agree on the high influence of CN on pesticide
surface runoff (Holvoet et al., 2005; Luo and Zhang, 2009; Wolt
et al., 2002). Nevertheless, neither interaction effects nor factor
correlations were considered in those sensitivity analysis studies.

In noncorrelated-factor setting it is found that there exists
interaction effect in the surface water risk evaluation as

P
Si

(¼0.671) is lower than 1 (Table 4). Furthermore, the STi estimations
for RM and HG are 0.810 (CI: [0.741, 0.882]) and 0.300 (CI: [0.243,
0.357]), respectively, which lead to large (STi � Si) for the two fac-
tors, i.e., 0.274 (¼0.810 � 0.536) and 0.205 (¼0.300 � 0.095),
respectively. Therefore, RM and HG are interacted in the surface
water risk evaluation. The STi estimations converge at about 15,000
model runs (Fig. 2d).

In correlated-factor setting the correlation structure among the
factors imposes little effect on Si in that the sensitive factors (RM
and RATEAI) are not or little correlated with the other factors. The Si
for RM and RATEAI are 0.607 and 0.090, respectively, which are very
similar to the Si estimations in noncorrelated-factor setting (IM:
0.605 and 0.090). The Si estimations converge at fewer than 5000
model runs (Fig. 3d). A part of the factors are correlated, such as the
pair of DTSO and DTW (r ¼ 0.36), and the pair of LECA and NOECA
(r¼ 0.95), but they have little influence on Si as they are insensitive
factors.

3.5. Implication for pesticide regulation

The sensitivity analysis results suggest that the sensitive factors
(i.e., properties) of a pesticide should be measured under a set of
typical conditions in pesticide regulation, in particular for pesticide
registration and evaluation. The Federal Insecticide, Fungicide, and
Rodenticide Act (FIFRA) in the United States and the regulation on
Registration, Evaluation, Authorisation and Restriction of Chemicals
(REACH) in the European Union both require pesticide manufac-
turers to submit essential pesticide properties for registration or
reregistration. Considering pesticide properties may vary widely
under different conditions, e.g., the sorption constant (KOC) affected
by soil properties (Weber et al., 2004), the sensitive factors
regarding pesticide risk should be measured under all typical
conditions in a region, such as the pesticide-fate-oriented scenarios
identified for Europe (Blenkinsop et al., 2008; Centofanti et al.,
2008). Consequently, the uncertainty of input factors would be
narrowed, and hence the overall uncertainty existing in pesticide
risk evaluation would be reduced, resulting in more confident de-
cisions in pesticide regulation.

4. Conclusions

This sensitivity analysis identifies the sensitive factors in PURE,
with associated interaction or correlation effects. Firstly, the air risk
evaluation is an additive process. RA is sensitive to RATE, EP, and
AMAF. The negative correlation between RATE and EP induces
counteractive effects against each other. Secondly, the soil risk
evaluation is also an additive process. RS is sensitive to RATEAI,
NOECW, LCW, and AM. The positive correlation between NOECW and
LCW largely increases the importance of LCW. Thirdly, the ground-
water risk evaluation is a nonadditive process. RG is sensitive to KOC,
DTSA, KH, and ADI, while KOC and DTSA have high interaction effects
on RG. The correlations among the four factors make KH and ADI
(both are insensitive in noncorrelated-factor setting) sensitive.
Finally, the surface water risk evaluation is a nonadditive process as
well. RW is sensitive to RM and HG, while the two factors have high
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interaction effects on RW. As most of these sensitive factors are also
considered sensitive or important in other sensitivity analysis or
monitoring studies, the above findings enhance the understanding
of PURE and improve the confidence in the risk scores.

In noncorrelated-factor setting the Si estimations by the Sobol’
and the IMmethods are very similar but with different convergence
performances. The IM method generally has shorter burn-in pe-
riods while the Sobol’ method tends to give more precise estima-
tions after burn-in periods, where the sampling strategies play an
important role. The IM method uses the permutated-column
sampling with pseudo-random numbers, while the Sobol’
method implements the substituted-column sampling with quasi-
random sequences (Morris et al., 2008).

That the Sobol’ and the IM methods give very similar Si esti-
mations provides the common ground for combining the two
methods to address both interaction and correlation effects, i.e.,
calculating Si and STi by the Sobol’ method in noncorrelated-factor
setting and calculating Si by the IM method in both noncorrelated-
factor and correlated-factor settings. In this study, the Si estima-
tions in correlated-factor setting are relatively different from the
ones in noncorrelated-factor setting, which again demonstrates
that it is cautious to assume all factors are independent in sensi-
tivity analysis. In summary, the combined approach, utilizing the
strengths of the Sobol’ and IM methods but unable to investigate
interaction effects in correlated-factor setting, provides an easy-to-
implement alternative to metamodelling techniques (e.g., Ratto
et al., 2007) for investigating both the interaction and correlation
effects.
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