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Abstract:

Agricultural pollutant runoff is a major source of water contamination in California’s Sacramento River watershed where
8500 km2 of agricultural land influences water quality. The Soil and Water Assessment Tool (SWAT) hydrology, sediment,
nitrate and pesticide transport components were assessed for the Sacramento River watershed. To represent flood conveyance in
the area, the model was improved by implementing a flood routing algorithm. Sensitivity/uncertainty analyses and multi-
objective calibration were incorporated into the model application for predicting streamflow, sediment, nitrate and pesticides
(chlorpyrifos and diazinon) at multiple watershed sites from 1992 to 2008. Most of the observed data were within the 95%
uncertainty interval, indicating that the SWAT simulations were capturing the uncertainties that existed, such as model
simplification, observed data errors and lack of agricultural management data. The monthly Nash–Sutcliffe coefficients at the
watershed outlet ranged from 0.48 to 0.82, indicating that the model was able to successfully predict streamflow and agricultural
pollutant transport after calibration. Predicted sediment loads were highly correlated to streamflow, whereas nitrate, chlorpyrifos
and diazinon were moderately correlated to streamflow. This indicates that timing of agricultural management operations plays a
role in agricultural pollutant runoff. Best management practices, such as pesticide use limits during wet seasons, could improve
water quality in the Sacramento River watershed. The calibrated model establishes a modelling framework for further studies of
hydrology, water quality and ecosystem protection in the study area. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

Increasing agricultural contamination of surface waters
has generated substantial concern since the 1940s
(Larson et al., 1995). This concern is especially relevant
in California’s Sacramento River watershed where
8500 km2 of agricultural land has a large influence on
water quality (USDA Forest Service, 2008). Many rivers
in the Sacramento River watershed are included in
California’s 303(d) list of impaired water bodies as a
result of multiple pollutants, especially heavy metals and
pesticides (U.S. EPA, 2006). This watershed, along with
the San Joaquin River watershed, drains into the
Sacramento–San Joaquin Delta (Delta), which has
shown an appreciable decline in aquatic species,
attributed in part to an increase in water pollutant levels
(Werner et al., 1999). Agricultural land within the
Sacramento River watershed receives thousands of tons
of pesticides every year (CA DPR, 2006). The primary
mode of agricultural non-point source pollution transport
is sediment and water runoff, leading to contamination
of the Sacramento River and its tributaries (Domagalksi,
1996). Therefore, accurately modelling the character-
istics of non-point pollution sources is the first step in
agricultural pollutant mitigation.
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The use of water quality modelling is a key component
for predicting surface water and sediment runoff. Water
quality modelling serves as a valuable tool in determining
the temporal and spatial variability of agricultural
pollutant sources. Various hydrological simulation
models have been applied at watershed scales for spatial
prediction of hydrological processes and associated water
quality (e.g. Luo et al., 2008; Wohlfahrt et al., 2010). The
Soil and Water Assessment Tool (SWAT; Arnold et al.,
1998), which is used in this study, is one of these
hydrologic models that is designed to simulate hydro-
logical and contaminant transport processes at the
watershed scale. The model has been used extensively
throughout the world for studying streamflow and
agricultural pollutant loads (Gassman et al., 2007).
Calibration of watershed models is often achieved

using inverse modelling (e.g. Kunstmann et al., 2006).
Inverse modelling is an efficient and objective method to
determine the optimum set of parameter values aimed at
minimizing differences between observed and simulated
output variables (streamflow, sediment loads, nitrate loads
etc.). This process is achieved by varying the model
parameters within a pre-determined range until the model
output best matches observed data. This is a potentially
attractive method, as the direct measurement of model
parameters describing physical systems is often time-
consuming, expensive and potentially error-ridden.
Because there may be a wide array of parameters that fit
measured output, no hydrological inverse problem is
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uniquely solvable. This is termed ‘model non-uniqueness’,
where if one parameter set solution is found, then there may
be inherently many more parameter sets that fit the same
solution. Therefore, one of the goals of inverse modelling is
to characterize the set of models, mainly through assigning
distributions having associated uncertainties to parameters
that fit the data and also satisfy prior knowledge of the
parameter space (Abbaspour et al., 2004). To do this, one
must consider the uncertainties associated with hydrologic
modelling: (1) errors in temporal and spatial observed input
data (temperature, rainfall, soil properties, elevation etc.),
(2) errors in observed output data (streamflow, sediment
concentration etc.) and (3) simplifications in the
hydrological and conceptual model (model assumptions,
agricultural management timing etc.).
Inverse calibration of a large-scale distributed hydro-

logic model against one watershed outlet gauge may not
accurately capture the temporal and spatial dynamics of
individual subwatersheds. Therefore, a multi-criteria
calibration should be performed for a better
characterization of the varying components of the
watershed (Abbaspour et al., 2007), while concurrently
helping to minimize the non-uniqueness problem by
narrowing the uncertainty prediction. If multiple gauge
sites with multiple constituents are available for calibra-
tion, one can gain better confidence that the entire
watershed is being accurately modelled.
In this study, the SWAT model was applied to the

Sacramento River watershed for dynamic simulations of
streamflow, sediment, nitrate and pesticides. For pesticide
fate and transport, chlorpyrifos and diazinon were chosen
as the test agents in calibrating and validating the model
for pesticide simulation. The objectives of this study were
to (1) modify the SWAT code to allow the modelling of
Figure 1. Study area of the Sacramento

Copyright © 2012 John Wiley & Sons, Ltd.
flood weir structures and flood water transfers along the
Sacramento River watershed, (2) calibrate, validate and
assess the uncertainty of the Sacramento River watershed
SWAT model at multiple stations for multiple constitu-
ents across the watershed by using the calibration and
uncertainty analysis program Sequential Uncertainty
Fitting Ver. 2 (SUFI-2) and (3) perform a temporal
correlation analysis to determine relationships between
agricultural pollutants. By characterizing the fate and
transport of agricultural pollutants in the Sacramento
River watershed, the results could aid in the development
of mitigation strategies to reduce the movement of
agricultural pollutants to surface waters.
MATERIALS AND METHODS

Study site

The Sacramento River monitoring gauge maintained by
the United States Geological Survey (USGS) at Freeport,
CA (USGS gauge #11447650) was chosen as the outlet of
the simulated watershed. The Sacramento River
watershed area, as defined by this study, is approximately
23 300 km2 (Figure 1). The watershed boundary is
bordered by gauge sites directly below dams on the
eastern, western and northern sides of the watershed. The
western side is bordered by the Black Butte Dam
(California Department of Water Resources (CA DWR)
ID: BLB); the eastern side is bordered by the Oroville
Dam (CA DWR ID: ORO), Yuba River at Marysville
USGS gauge (approximately 20 km below Englebright
Dam; USGS gauge #11421000), Camp Far West Dam
(CA DWR ID: CFW) and Folsom Dam (CA DWR ID:
AMF); the northern side is bordered by Shasta Dam (CA
River watershed in northern California
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DWR ID: SHA) and Whiskeytown Dam (USGS gauge
#11372000) (Figure 1, Table I). The study area includes
the majority of agricultural land in the northern Central
Valley from Sacramento to Red Bluff. The majority of the
land use in the study area is rangeland composing
approximately 62% of the total watershed area, whereas
agricultural land composes approximately 33% of the total
area. The remaining 5% represents urban land use,
waterways/wetlands and forested areas. Almost all agricul-
tural activities impacting water quality of the Sacramento
River and its tributaries occur in the Sacramento River
watershed that is modelled in this study.
The SacramentoRiverValley has a typicalMediterranean

climate characterized by hot summers and mild winters,
with an average temperature ranging from 4.4 �C in the
winter to above 32 �C in the summer (Guo et al., 2007). The
soils of the valley are mostly fine grained with low
permeability (Troiano et al., 2001). The mean annual
precipitation ranges from 36 to 64 cm, with most of the
precipitation occurring during November to April. Hence,
the streamflow in the Sacramento River is dominated by
winter and spring runoff from snowmelt and rainfall.
Additional water requirement for crops grown within the
watershed is therefore dependent on irrigation from surface
water or groundwater (CA DWR, 1998). Dam and reservoir
operations for urban and agricultural uses have greatly
disrupted the natural hydrology in this region.
Model description and modifications

SWAT model description. The watershed hydrology and
water quality model referred to as SWAT was chosen for
this study (Arnold et al., 1998). SWAT is a continuous-
time, quasi-physically based, distributed water quality
model designed to simulate water, sediment and agricul-
tural chemical transport on a river-basin scale. SWAT
was designed to be applied for ungauged river basins and
therefore can be used to analyze many watersheds using
readily available data. SWAT integrates processes for the
Table I. Inflows and monitoring sites

Map ID Tributary outlets or river site

Lati

Sites for inlet discharge
1 Shasta Dam 40.
2 Whiskeytown Dam transfer 40.
3 Black Butte Dam 39.
4 Oroville Dam 39.
5 Yuba River – Marysville 39.
6 Camp Far West Dam 39.
7 Folsom Dam 38.

Sites for model evaluation
8 Sacramento River – Bend Bridge 40.
9 Sacramento River – Hamilton City 39.
10 Sacramento River – Colusa 39.
11 Colusa Basin Drain 38.
12 Sacramento River – Verona 38.
13 Sacramento River – Freeport 38.

Copyright © 2012 John Wiley & Sons, Ltd.
simulation of climate, hydrology, plant growth, erosion,
nutrient transport and transformation, pesticide transport
and management practices. The SWAT version 2005/
ArcSWAT version, which is coupled with Environmental
Systems Research Institute (ESRI’s) ArcGIS version 9.3,
was selected for this study. Full details of the SWAT
model can be found in Neitsch et al. (2005). SWAT
model has been applied to numerous agricultural water-
sheds for hydrology and water quality simulations
(Gassman et al., 2007; Luo et al., 2008). Previous studies
suggested that SWAT successfully captured the spatial
and temporal variations on watershed hydrology and the
impacts of agricultural activities on water quality.
In SWAT, the watershed of interest is divided into

subbasins, which are then divided into hydrologic
response units (HRUs). The HRUs are intended to
represent the heterogeneity of the important physical
properties of the watershed and are delineated by
overlaying topography, soil data and land use maps in a
geographical information system (GIS). This subdivision
gives the model the basis to better represent the properties
of land uses and/or soils of each subbasin that may have a
significant effect on hydrology.
The HRU water balance is represented by four storage

components: snow, soil profile, shallow aquifer and deep
aquifer. Flow, sediment and agricultural runoff are
summed across all HRUs in a subwatershed, and the
resulting flows and pollutant loads are then routed
through channels, ponds and/or reservoirs to the water-
shed outlet. The runoff volume is estimated using the
modified Soil Conservation Service (SCS) Curve Number
method (SCS, 1984). Sediment discharge at the watershed
outlet is calculated using soil erosion and sediment
routing equations such as the Modified Universal Soil
Loss Equation. Nutrient outputs are estimated by tracking
their movements and transformations. The pesticide
component in SWAT simulates pesticide transport in
dissolved and particulate phases with surface and
subsurface hydrologic processes (Neitsch et al., 2002).
in the Sacramento River watershed

Location Sampling type

tude Longitude Streamflow Water quality

601 �122.443 X X
516 �122.525 X X
808 �122.329 X X
522 �121.547 X X
176 �121.524 X X
050 �121.317 X X
683 �121.183 X X

289 �122.186 X X
752 �121.994 X
214 �121.991 X X
844 �121.729 X X
774 �121.597 X X
450 �121.5 X X

Hydrol. Process. 27, 236–250 (2013)



Figure 2. Schematic diagram of the Sacramento River flood routing (from
Roos, 2006)
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The fate and transport of pesticides are determined by
their solubility, degradation half-life and partitioning
coefficients (Neitsch et al., 2002). For this study,
irrigation in an HRU was automatically simulated by
SWAT on the basis of the water deficit in the soil.
Depending on the subwatershed, irrigation water was
extracted from the nearby reach or a source outside the
watershed. Fertilization in an HRU was automatically
applied on the basis of a plant growth threshold. The type
of fertilizer applied in each subbasin was based on a
literature review (Carman and Heaton, 1977; Krauter
et al., 2001).

Modelling of canals, diversions and bypass conveyances
in SWAT. The Sacramento River watershed SWAT model
in this study includes the major and many minor tributaries
and the trans-basin diversion from the Trinity River to the
Sacramento Basin. Major irrigation diversions include
the Anderson–Cottonwood in the northern part of the
watershed and the Tehama–Colusa and Glenn–Colusa
canals in the central part of the watershed. These are
simulated by water-use volume removals from the
geographical point of extraction on the Sacramento River
and transferred via a point source to the reach of
final conveyance. The average monthly removal and
conveyance were based on long-term averages from the
CA DWR when observed data were not available.
Flood conveyances within the Sacramento River

watershed are an integral part of the watershed stream
dynamics. The Sacramento River floodway system is
designed to carry large winter season floods, culminating
in combined flow of 17 300m3/s in the river and bypasses
(Roos, 2006). The largest known flood discharge was
17 500m3/s, which occurred in February 1986. There are
six major flood control structures on the Sacramento
River: Colusa Weir, Fremont Weir, Moulton Weir,
Tisdale Weir, Sacramento Weir and Colusa Basin Drain
Weir. Other minor flood weirs exist but were not
explicitly represented in the model. These flood weirs
capture streamflow when the river stages are above a
certain flood stage. When the river is above this stage
value, water spills over the weir structures, capturing
streamflow that would have originally remained in the
river. The weirs transport water into wetlands, other
streams or completely out of the modelled watershed
(Yolo Bypass, for example). The Sacramento River flood
weir discharge for the six weirs was based on the work by
Feyrer et al. (2006). Figure 1 shows the location of the
flood weirs. A schematic of the Sacramento River flood
system from Roos (2006) is found in Figure 2.
The current version of SWAT, SWAT 2005, cannot

represent flood conveyances, and therefore, the model
code was modified to incorporate this important feature.
The SWAT code was manipulated by including a rule-
based algorithm in the routing module (Figure 3). If the
discharge is above the diversion discharge listed in
Table II, the water is routed to the diversion destination.
For example, if the Sacramento River simulated discharge
is greater than 1841m3/s near the Colusa Weir, any
Copyright © 2012 John Wiley & Sons, Ltd.
amount over this discharge will be diverted to the Sutter
Bypass. The Fremont and Sacramento Weirs divert the
water to the Yolo Bypass, which is beyond the modelled
watershed. Therefore, any discharge above the specified
flood discharge is removed from the river and not
transported within the watershed. No flood data were
available for the Colusa Basin Drain Weir, and therefore,
the largest discharge in the dataset was assumed to be the
flood diversion discharge. This flood discharge is diverted
to the Yolo Bypass. All model runs within this study were
simulated using SWAT with the new flood conveyance
code. A schematic of the flood conveyance algorithm is
shown in Figure 3.

Model initialization

Model input. The SWAT input parameter values such as
topography, land use/land cover, soil and climate data were
compiled using databases from various state and government
agencies. Elevation, land use and stream network data were
obtained from the US Environmental Protection Agency’s
Better Assessment Science Integrating Point and
Non-point Sources database. Data included 1 : 24 000
scale land use/land cover data developed by the CA DWR
during 1996–2004 (CA DWR, 2009), 1 : 24 000 scale
Hydrol. Process. 27, 236–250 (2013)
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Figure 3. Schematic of the flood conveyance algorithm. SWAT, Soil and Water Assessment Tool

Table II. Flood weir routing values for selected weirs in the Sacramento River watershed

Map ID Flood structure Divert when above (m3/s) River origin Divert to Latitude Longitude

14 Fremont Weir 2000 Sacramento River Out of watershed
(Yolo Bypass)

38.76 �121.64

15 Sacramento Weir 5000 Sacramento River Out of watershed
(Yolo Bypass)

38.60 �121.56

16 Tisdale Weir 595 Sacramento River Sutter Bypass 39.02 �121.82
17 Moulton Weir 1274 Sacramento River Sutter Bypass 39.34 �122.02
18 Colusa Weir 1841 Sacramento River Sutter Bypass 39.23 �121.99
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Digital Elevation Models (DEMs) and 1 : 100 000 scale
stream network data from the National Hydrography
Dataset. The CA DWR land use data is the highest spatial
resolution cropland and irrigation data for California.
Cropland information was assumed to have remained
unchanged since the date of survey completion. The top
five crops in the watershed include rice (9.4% of the
watershed area), orchards (5.74%), agricultural row crops
(2.26%), general agricultural land (2.06%) and hay
(2.04%). Soil properties in the watershed were extracted
from the 1 : 250 000 State Soil Geographic database,
which is based on soil surveys. Daily weather data,
including precipitation and minimum and maximum
temperatures, were retrieved from the California
Irrigation Management Information System (Figure 1).
Model initialization and evaluation were based on the

monitoring data at selected inlet and outlet gaugeswithin the
study area (Figure 1, Table I). Data on streamflow andwater
quality for those gauges were collected from the National
Water Information System (USGS, 2008) and the California
Surface Water Database (CEPA, 2008). Monthly
streamflow values were aggregated from daily values, and
long-term monthly averages were used for missing data.
Sediment load data were available in a monthly interval at
Copyright © 2012 John Wiley & Sons, Ltd.
the Sacramento – Freeport watershed outlet and varied for
the other gauges within the watershed. The availability of
observed nitrate data varied from site-to-site throughout the
watershed. Chlorpyrifos and diazinon data were only
available at the Sacramento – Freeport outlet. SWAT
required continuous data at the dam inlets into the
watershed, and therefore, the LOADEST program devel-
oped by the USGS was used to predict sediment and nitrate
loads at the inlets (Runkel et al., 2004). LOADEST
estimates streamflow constituent concentration on the basis
of observed data. Because most of the agricultural land is
located within the Sacramento Valley, the streamflow at the
watershed inlets was assumed to be free of pesticides.
Pesticide application data were collected from the

Pesticide Use Reporting system administered by the
California Department of Pesticide Regulation (CA DPR).
Since 1990, California has required all commercial pest
control operators to report all pesticide applications. These
reports include information about the pesticide applied,
amount, area treated, timing of applications and the subject
crop with a spatial accuracy of one square mile. Pesticide
use amounts are recorded at daily intervals for each
township/range/section in California and are tabulated by
each county, then submitted to the CADPR for compilation
Hydrol. Process. 27, 236–250 (2013)
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and distribution. For this study, use amounts of chlorpyrifos
and diazinon were retrieved from the database as weekly
averages for each township/range/section and distributed
into the agricultural HRUs in each subbasin.
On the basis of available water quality monitoring data,

the fate and transport of two organophosphate pesticides,
diazinon and chlorpyrifos, were analyzed. Both pesticides
are highly used nationwide and listed on theUSCleanWater
Act Section 303(d) list of products that may cause water
body impairment. According to the US Environmental
Protection Agency, diazinon and chlorpyrifos are highly
toxic to birds, fish and aquatic insects. Depending on the
formulation, diazinon and chlorpyrifos also have a low to
high toxicity to humans. Diazinon and chlorpyrifos
are highly soluble and have a low persistence in soil with
a half-life of 2–6weeks depending on climate. Chlorpyrifos
has a higher soil adsorption coefficient (6070) than diazinon
(1000), which causes it to adhere to soil particles much
more strongly than diazinon. The chemical and physical
properties of chlorpyrifos and diazinon were primarily
obtained from the built-in pesticide database in SWAT.
Other transport coefficients were set at the default values
suggested by the SWAT model (Neitsch et al., 2005).

Sacramento River watershed model set-up. The
ArcSWAT interface was used for the set-up and
parameterization of the model. On the basis of the DEM,
stream network and irrigation diversion data, a minimum
drainage area of 550 km2 was chosen to divide the
watershed into 33 subbasins. The subbasin delineation in
this study is consistent with the subbasins defined by the CA
DWR (CEPA, 2007). Inlets into the watershed were based
on the dam locations discussed in the Section on Modelling
Flood Conveyances Using SWAT. For each subbasin,
multiple HRUs were distributed on the basis of the overlap
of land use, soil and slope features for landscape
characterization at finer resolution. A total of 471 HRUs
were defined in the study area on the basis of a 5% coverage
threshold of land use, soil and slope features in each
subbasin. The median slope of the watershed was 4.9%, and
therefore, two slope classes of 0–4.9% and 5.0–291% were
used. Model simulations were run from 1990 to 2007, with
the first two years excluded for model initialization.
Model sensitivity analysis, uncertainty analysis and
calibration

Data and statistics for model calibration. Monthly
model calibration was performed for six streamflow
and water quality stations (Figure 1, Table I). These
stations are distributed throughout the watershed and
therefore provide a regional representation of model
parameters. Sample totals of 435 for sediment load
(four stations), 260 for nitrate (three stations), 139 for
chlorpyrifos (one station) and 133 for diazinon (one
station) were used for watershed calibration and
validation. For pesticide samples with concentrations
lower than the detection limit, the concentration was
recorded as the reporting limit. Observed data from
Copyright © 2012 John Wiley & Sons, Ltd.
some of the stations did not cover the entire simulation
period, and therefore, different calibration time periods
were included in the calibration procedure. For all
stations, a split-sample approach was used, where the
latter years were used for validation and the prior years
were used for calibration. To compare monthly
simulated and observed data, the Nash–Sutcliffe (NS;
Nash and Sutcliffe, 1970) efficiency coefficient was
used as the objective function:

NS ¼ 1�
PT
t¼1

Qt
o � Qt

m

� �2
PT
t¼1

Qt
o � Qave

o

� �2 (1)

where NS is the Nash–Sutcliffe coefficient, Qt
o is the

observed data, Qt
m is the simulation data and Qave

o is the
average of the observed data. Nash–Sutcliffe values can
range from negative infinity to 1, where 1 is a perfect
match of model data to observed data.
In this study, multiple variables (streamflow, nitrate,

chlorpyrifos and diazinon) are used in the objective
function, resulting in one NS value for multiple output
variables. In this case, the NS objective function is

g ¼
X
i

wiNSi (2)

where g is the NS objective function, w is the weight of
the parameter and i is the variable. The objective function
determines the ‘best simulation’ (best average NS
coefficient) of all stochastic simulations. For this study,
the weights for all parameters were set at 1. Other model
efficiency statistics such as the coefficient of determin-
ation (R2), f, and percent bias (PBIAS) were used to
further show the goodness of calibration. R2 was included
to show the proportion of variance of the simulated
variable that is predicted from the observed variable. f is
a slightly modified version of the efficiency criterion
defined by Krause et al. (2005) where the coefficient of
determination, R2, is multiplied by the coefficient of the
regression line, b. This function allows accounting for the
discrepancy in the magnitude of two signals (depicted by
b) as well as their dynamics (depicted by R2). Including b
guarantees that the over-predictions or under-predictions
are reflected in the statistic. f is calculated by:

f ¼ bj jR2

bj j�1R2
if bj j≤1
if bj j>1 :

�
(3)

PBIASmeasures the average tendency of the simulated data
to be larger or smaller than the observed data (Gupta et al.,
1999). An optimal PBIAS value is 0.0%, with a low value
indicating an accurate simulation. Positive values indicate
model underestimation, and negative values indicate model
overestimation. Based on the work by Moriasi et al. (2007),
a satisfactory PBIAS value is�25% for streamflow,�55%
for sediment and�70% for nutrients. No specific ranges are
available for pesticides.
Hydrol. Process. 27, 236–250 (2013)
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Model parameters for calibration and uncertainty
analysis. Because SWAT involves a large number of
parameters, a global sensitivity analysis was performed to
identify the key parameters across the Sacramento River
watershed. The sensitivity analysis was performed using a
combination of Latin hypercube and one-factor-at-a-time
sampling strategy developed by van Griensven et al.
(2006). This approach has the advantage of being fast
compared with similar procedures and therefore does not
produce an absolute measure of sensitivity, but rather a
ranked list of sensitive parameters. The sensitivity was
assessed at the watershed outlet. At first, a large number
of parameters were analyzed and then subsequently
removed if the parameter was found to be insensitive
for the model output. As a result, only the sensitive
parameters were used for calibration.
The initial ranges for the selected parameters were

based on prior knowledge and a literature review (Luo
et al., 2008). For the calibrated parameters, separate
values for each region, land use/soil texture or crop were
used, which substantially increased the calibration
parameters. To obtain a regional calibration, for example,
the Curve Number values for subbasins 1–9 were
changed to various values, whereas the Curve Number
values for subbasins 10–12 were changed to different
values. The regional parameter values were manipulated
to match the nearest monitoring gauge. To account for the
uncertainty in the observed data, a relative error of 10%
was assumed (Butts et al., 2004; Schuol et al., 2008a).

Calibration and uncertainty analysis procedure. Hydro-
logic models are subject to uncertainties from input data
(rainfall, soil properties etc.), the conceptual model
(simplification of processes, lumping of heterogeneities
etc.), model parameters (non-uniqueness, lumped para-
meters etc.) and measured data (error in discharge, point
samples of sediment etc.). Calibration, validation and
uncertainty analysis were performed for hydrology and
water quality using the program SUFI-2 (Abbaspour
et al., 2004; Abbaspour et al., 2007). Yang et al. (2008)
compared different uncertainty analysis techniques and
determined that SUFI-2 needed the fewest amount of
model runs to achieve a satisfactory solution. This
efficiency is desirable when dealing with computationally
intensive, large-scale models, such as the Sacramento
River watershed. The calibration parameter ranges were
based on previous SWAT calibration procedures using
SUFI-2 (Yang et al., 2007; Schuol et al., 2008a; Schuol
et al., 2008b; Yang et al., 2008).
The SUFI-2 algorithm provides a platform to conduct

calibration and validation, as well as uncertainty analysis.
In the SUFI-2 algorithm, known uncertainties are mapped
onto the parameter ranges, which are calibrated to bracket
most of the measured data in the prediction uncertainty for a
confidence level of 95% (95PPU). The overall uncertainty
of the model output is quantified by the 95PPU calculated at
the 2.5% (L95PPU) and the 97.5% (U95PPU) uncertainty
levels of the cumulative distribution obtained through
Latin hypercube sampling (Abbaspour et al., 2004). A
Copyright © 2012 John Wiley & Sons, Ltd.
combination of uncertainties are included in the 95PPU,
including model parameter and simplification uncertainties
as well as observed data uncertainty, which is assumed to be
10% for this study. Starting with a larger parameter range,
SUFI-2 iteratively decreases the parameter uncertainties.
After each iteration, new and narrower parameter uncer-
tainties are calculated, where the most sensitive parameters
find a larger uncertainty reduction than the less sensitive
parameters. For each calibration iteration, a ‘best simulation’
is found, which is the one simulation with the highest model
efficiency using model performance statistics (i.e. NS, R2, f
and PBIAS) compared with observed data.
Two uncertainty indices are used to compare measure-

ment to stochastic simulation results: the p-factor and the
r-factor (Abbaspour et al., 2004; Abbaspour et al., 2007).
The p-factor is the percentage of measured data bracketed
by the 95PPU. The maximum value for the p-factor is 1,
and an ideal simulation would bracket all measured data
in the 95PPU band. The r-factor is calculated as the ratio
between the average range of the 95PPU band and the
standard deviation of the measured data. The r-factor
represents the range of the uncertainty interval and should
be as small as possible. The r-factor indicates the strength
of the calibration and should be close to or smaller than a
practical value of 1. A larger p-factor can be found at the
expense of a larger r-factor, and often a tradeoff between
the two is sought (Schuol et al., 2008a).
RESULTS AND ANALYSIS

Modelling flood conveyances using SWAT

The implementation of the floodweir modification for the
Sacramento River watershed allowed for much-improved
model simulations (Figure 4).With the use of the flood stage
discharges based on the work by Feyrer et al. (2006), the
uncalibrated monthly NS coefficient for streamflow
improved from �0.26 to 0.87, thus allowing for a better
representation of the managed hydrology in the watershed.
The high NS coefficient demonstrates the large effects of
reservoir management on streamflow. The reservoirs largely
influence the amount of streamflow at any given time,
especially during the summer months. Analyzing the results
by removing the summermonthswhen rainfall is negligible,
the root mean square error improved from 717.2m3/s with
no flood routing to 219.6m3/s with the flood routing
implemented. The implementation of the flood weir
algorithm can be useful for other studies throughout the
world. If enough information is known about the flood weir
and its conveyance, the new flood weir modification could
be used to improve watershed simulations.

Model sensitivity analysis

Most sensitive input parameters related to model
simulations of hydrology, sediment, nitrate and pesticides
were identified on the basis of global sensitivity analysis
(Table III). Curve Number and the alpha baseflow factor
were the most sensitive to streamflow. This is physically
Hydrol. Process. 27, 236–250 (2013)



Figure 4. Observed and pre-flood and post-flood code streamflow. SWAT, Soil and Water Assessment Tool

Table III. Sensitive Soil and Water Assessment Tool (SWAT) parameters and the final calibrated values or ranges

Variable Sensitive parameters Parameter definition Final parameter value range

Sensitive to hydrology v_ALPHA_BF.gw Baseflow alpha factor 0.07 to 0.84
r_CN2.mgt Curve Number �23% to +20%
r_CH_N2.mgt Manning’s n value for the

main channel
�22% to +21%

r_CH_K2.mgt Effective hydraulic conductivity in
the main channel

2 to 67mm/h

r_OV_N.hru Manning’s n value for overland flow �19% to �1%
v_LAT_TTIME.hru Lateral flow travel time 5 to 165 days
r_SOL_AWC.sol Soil available water content �22% to +9%
r_SOL_BD.sol Soil bulk density �18% to +24%
r_SOL_K.sol Soil hydraulic conductivity �20% to +25%
v_ESCO.hru Soil evaporation compensation factor 0.09 to 0.82
v_EPCO.hru Plant uptake compensation factor 0.19 to 1.00
v_SURLAG.bsn Surface runoff lag coefficient 9.88 days

Sensitive to hydrology relating
to agricultural management

v_FLOWFR.mgt Fraction of available streamflow
for irrigation

0.01 to 0.92

v_AUTO_WSTRS.mgt Water stress threshold that
triggers irrigation

0.25 to 0.75

r_HEAT_UNITS.mgt Number of heat units to bring crop
to maturity

�9% to +10%

Sensitive to sediment v_SPCON.bsn Channel re-entrained
linear parameter

0.005

v_PRF.bsn Sediment routing factor
in main channels

0.07

v_SPEXP.bsn Channel re-entrained
exponent parameter

1.40

v_ADJ_PKR.bsn Peak rate adj. factor for sed.
routing in the subbasin

0.63

v_CH_EROD.rte Channel erodability factor 0.06 to 0.64
v_CH_COV.rte Channel cover factor 0.03 to 0.71
v_USLE_P.mgt USLE support practice factor 0.15 to 0.87
r_USLE_C.crop.dat USLE water erosion factor �19% to +19%
r_USLE_K.cov USLE soil erodability factor �20% to +10%

Sensitive to nitrate v_BIOMIX.mgt Biological mixing efficiency 0.17 to 0.85
v_ERORGN.hru Organic N enrichment ratio for

loading with sediment
1.15 to 3.90

v_AUTO_NSTRS.mgt Nitrogen stress threshold that
triggers fertilization

0.15 to 0.65

Sensitive to pesticides v_PERCOP.bsn Pesticide percolation coefficient 0.03 for chlorpyrifos
0.14 for diazinon

v_AP_EF.pest.dat Pesticide application efficiency 0.65 to 0.80
v_PST_KG.mgt Amount of pesticide applied

in each HRU
+15% to +35%

v_CHPST_STL.swq Settling velocity for pesticide sorbed
to sediment

0.37 to 0.95

‘v_’ indicates a replacement of the original parameter value; ‘r_’ indicates a relative change from the original parameter value; ‘a_’ indicates an addition
of the original parameter value.
The filename extension in the sensitive parameter column indicates the input file being changed.
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reasonable because elevated Curve Numbers represent
increased runoff and therefore decreased infiltration,
whereas the baseflow factor would lead to higher or
lower baseflow contributions during low flow events.
Crop and agricultural management parameters such as
automatic irrigation and fertilization thresholds, sediment
coefficients and pesticide application rates were also
sensitive to hydrologic and water quality model output.
Table III describes the most sensitive hydrology and
water quality parameters. For example, alpha baseflow
factor may be 0.1 in the northern portion of the watershed
and 0.7 in the southern portion of the watershed. It is
important to note that the results of the sensitivity analysis
may be site specific and thus are not directly applicable to
other sites.
Model calibration, validation and uncertainty analysis

The monthly calibration, validation and uncertainty
results are shown in Figures 5–9 and Tables III, IV.
Table III displays the final calibration ranges for the
sensitive SWAT parameters. A range is displayed because
each region in the Sacramento River watershed may have
different parameter values. For example, the baseflow
alpha factor may have a value of 0.5 in the northern
portion of the Sacramento River watershed and 0.25 in
the southern portion of the Sacramento River watershed.
The shaded region in each figure is the 95PPU uncertainty
range. The 95PPU is not calculated where observed data
are not available, and thus, no 95PPU ranges are available
for periods with no observed data. Table IV presents the
calibration results for the regional, multi-site calibration
approach. The model efficiency statistics are from the
‘best simulation’ for the final calibration iteration, which
is the best average NS coefficient from Equation (2).
Given the large amount of uncertainty within the
Sacramento River watershed, calibration and validation
of the watershed could be qualified as ‘good’ or
‘satisfactory’. The simulation results were considered to
be good if the NS coefficient was larger than 0.75 and
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Copyright © 2012 John Wiley & Sons, Ltd.
satisfactory if it was between 0.36 and 0.75 (Van Liew
and Garbrecht, 2003; Larose et al., 2007). This indicates
good quality of the input data as well as an accurate
representation of the agricultural management techniques.
Figure 5 displays the SWAT-predicted monthly

streamflow at the Sacramento River – Freeport watershed
outlet compared with the USGS and CA DWR observed
streamflow data. While a large portion of the streamflow
is released from the upstream reservoirs, a significant
correlation between streamflow and precipitation in the
Sacramento River watershed (p< 0.05) was found. On
average, 60% of the discharge data for the entire
simulation period were bracketed by the 95PPU, while
the average r-factor was 0.30. The low r-factor can be
attributed to the managed reservoir releases into the
watershed, where a low r-factor indicates a small
thickness of the 95PPU band and thus smaller uncertainty
of the input parameters. A low r-factor was found for all
streamflow gauges. This result shows the effect of the
reservoir releases on streamflow, where varying the range
of model input parameters leads to a similar streamflow
output. A larger r-factor would be expected for a
completely natural watershed, where a wider range (or
collection) of parameters would be expected to have a
significant effect on the streamflow.
At the watershed outlet, most of the data outside of the

95PPU band were from low flows, indicating that the model
might not be fully capturing the dynamics of the
groundwater/baseflow component of the hydrologic system.
This bolsters the call for the improvement of the simplified
soil water and groundwater representations in SWAT (e.g.
Gassman et al., 2007; Kim et al., 2008). It is well known that
much of the groundwater contamination in California is in
shallow aquifers that are directly connected to surface
waters (Belitz and Landon, 2010). Understanding how
water within the fluvially derived sediments and the stream
channel interacts is critical to efforts attempting to protect
both groundwater and surface water resources (e.g. Valett
et al., 1997; Dahm et al., 1998; Stanford and Ward, 1998).
The use of a coupled SWAT and groundwater model would
9 2000 2001 2002 2003 2004 2005 2006 2007
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Figure 6. Observed, simulated and the 95PPU uncertainty band of sediment load at the watershed outlet. 95PPU, prediction uncertainty for a confidence
level of 95%
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Figure 7. Observed, simulated and the 95PPU uncertainty band of nitrate load at the watershed outlet. 95PPU, prediction uncertainty for a confidence level of 95%

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

C
hl

or
py

ri
fo

s 
lo

ad
 (

m
g/

m
o)

95PPU

Simulated

Observed

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Year

Figure 8. Observed, simulated and the 95PPU uncertainty band of chlorpyrifos load at the watershed outlet. 95PPU, prediction uncertainty for a
confidence level of 95%
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allow for improved groundwater–surface water simulations,
as has been shown by Kim et al. (2008).
The average NS coefficient of the sites for streamflow

discharge was 0.79 for calibration and 0.82 for validation,
Copyright © 2012 John Wiley & Sons, Ltd.
indicating a good simulation of surface water hydrology at
the watershed level. As shown in Figure 5, SWAT over-
predicted the baseflow for the Sacramento River – Freeport
gauge but satisfactorily simulated the peaks and the
Hydrol. Process. 27, 236–250 (2013)
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Table IV. Monthly calibration, validation and uncertainty statistics for the streamflow and water quality sites in the Sacramento River
watershed

Station p-factor r-factor

Calibration Validation

Dates NS R2 Φ PBIAS (%) Dates NS R2 Φ PBIAS (%)

Streamflow
Red Bluff 0.77 0.33 1992–2002 0.89 0.94 0.89 �10.0 2003–2007 0.9 0.9 0.82 �3.0
Hamilton City 0.61 0.3 1992–2002 0.91 0.91 0.82 7.1 2003–2007 0.85 0.86 0.72 �6.4
Colusa 0.64 0.38 1992–2002 0.71 0.88 0.71 �10.3 2003–2007 0.81 0.86 0.86 �11.1
Colusa Basin Drain 0.27 0.45 1992–2001 0.48 0.56 0.32 �51.4 2002–2007 0.64 0.67 0.37 �21.9
Verona 0.66 0.19 1992–2002 0.89 0.89 0.77 �6.7 2003–2007 0.84 0.86 0.71 �11.2
Freeport 0.66 0.17 1992–2002 0.87 0.87 0.8 �6.5 2003–2007 0.86 0.86 0.71 �12.0
Sediment load
Colusa Basin Drain 0.38 0.36 1995–2000 0.11 0.19 0.04 24.6 2001–2003 0.18 0.21 0.04 19.9
Verona 0.89 1.02 1996–1997 0.86 0.91 0.64 �2.9 1997–1998 0.63 0.72 0.52 5.5
Freeport 0.67 0.8 1992–2002 0.66 0.67 0.42 0.6 2003–2007 0.64 0.64 0.41 �14.1
Nitrate load
Red Bluff 0.56 0.39 1996–1997 0.82 0.87 0.61 �15.5 1997–1998 0.5 0.58 0.25 12.3
Verona 0.39 0.26 1996–1997 0.71 0.73 0.46 0.3 1997–1998 0.43 0.57 0.18 5.6
Freeport 0.63 0.43 1993–2004 0.69 0.74 0.67 �8.1 2004–2007 0.51 0.59 0.48 10.8
Chlorpyrifos
Freeport 0.63 0.87 1993–2000 0.72 0.76 0.67 �9.6 2001–2007 0.63 0.45 0.23 20.0
Diazinon
Freeport 0.68 0.77 1993–2001 0.79 0.81 0.75 21.1 2002–2007 0.5 0.59 0.48 �55.1

NS, Nash–Sutcliffe; PBIAS, percent bias.
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mid-range flows. The presence of flood diversions directly
above the Sacramento River – Colusa gauge led to an NS
coefficient of 0.71 for the calibration period, which is lower
compared with those of the other gauges on the Sacramento
River. The lowest NS coefficient was 0.48 for the Colusa
Basin Drain subbasin calibration period. SWAT model
performance for the Colusa Basin Drain subwatershed is
related to the characterization of irrigation water diversion
and agricultural management practices in the watershed.
The lack of knowledge about agricultural management
practices (water transfers, irrigation of crops, collection and
release of water for rice ponding etc.) within this region is
the reasonwhy this part of themodel did not perform aswell
as the other gauged basins.
Copyright © 2012 John Wiley & Sons, Ltd.
Because of the lack of irrigation water-use data in the
Sacramento River watershed, we opted to use the automatic
irrigation algorithm in SWAT. The automatic irrigation in
SWAT limits the amount of irrigation water that can be
applied to satisfy soil field capacity for any HRU.When the
soil field capacity is reached, irrigation is no longer needed
and is therefore no longer applied. This assumption assumes
full irrigation efficiency (no wasted water) and likely
underestimates the agricultural drainage to streams during
the irrigation season, which can be a large amount in the
agricultural regions in the Sacramento River watershed
(Colusa County Resource Conservation District, 2008).
This is one potential reason why the simulation accuracy of
the Colusa Basin Drain subbasin was low.
Hydrol. Process. 27, 236–250 (2013)



Table V. Correlation coefficient matrix between the simulated
monthly model outputs

Streamflow Sediment Nitrate Chlorpyrifos Diazinon

Streamflow 1
Sediment 0.95 1
Nitrate 0.47 0.47 1
Chlorpyrifos 0.44 0.55 0.32 1
Diazinon 0.23 0.22 0.09 0.55 1

Significant correlations (p< 0.05) were found between all variables.
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Results of the monthly sediment load simulation in the
streamflow discharge are shown in Figure 6 and Table IV.
On average, approximately 65% of the observed sediment
data are bracketed by the 95PPU; the r-factor equaled 0.73.
This result shows a good balance between the uncertainty
measures used in the calibrated model. As with the
streamflow discharge, a large amount of the observed
sediment data missing the 95PPU band was during low flow
conditions. The calibration and validation of sediment
loads for the Sacramento River watershed were deemed
satisfactory with an average NS coefficient of 0.54. Again,
the lowest NS coefficient belonged to the Colusa Basin
Drain region and can be largely explained by reasons
previously discussed. Although the NS coefficient for the
Sacramento River – Freeport gaugewas ‘satisfactory’with a
value of 0.66 and 0.64 for the calibration and validation
periods, respectively, themodel over-predicted the sediment
loads during the dry season throughout the simulation
period. This can be explained by the over-prediction of
baseflow, as previously discussed. A larger baseflow
contribution will result in higher sediment loads because
of increased channel scour. The SWAT model also under-
predicted the peak sediment loads from2001 to 2004, which
can be attributed to the under-prediction of the same peaks
for discharge at the Sacramento – Freeport gauge.
Results of the nitrate load simulation in the streamflow

discharge are shown in Figure 7 and Table IV. On
average, 53% of the observed data were within the 95PPU
band. For the three sites, the average r-factor value was
0.36. Similar to the streamflow and sediment load
simulations, a large amount of the data not captured by
the 95PPU band was during low streamflows. However,
the peaks and mid-range nitrate loads were generally
within the 95PPU band. The average nitrate NS
coefficients for the calibration and validation periods
were 0.74 and 0.48, respectively, indicating a good
simulation of nitrate loading throughout the watershed.
This result indicates that SWAT can adequately simulate
nitrogen management techniques.
Results of the pesticide load simulations in the streamflow

discharge are shown in Figure 8 for chlorpyrifos, Figure 9 for
diazinon and Table IV for both. Only data at the watershed
outlet were used because of the lack of observed continuous
data throughout the watershed. Approximately 63% of the
observed data for chlorpyrifos and 68% for diazinon were
bracketed by the 95PPU band. The r-factors for chlorpyrifos
and diazinon were 0.87 and 0.77, respectively, indicating a
good balance between the r-factor and p-factor. For the
model simulations, the pesticide database properties such as
Koc (sorption coefficient) and half-life were kept at their
default values. Varying these parameters will likely increase
the 95PPU band and thus capture more of the observed data,
but we assumed these default parameters as our calibration
values. TheNS coefficient was 0.72 for chlorpyrifos and 0.90
for diazinon for the calibration period and 0.65 and 0.50 for
the validation period, respectively. As with the nitrate
simulation, the accuracy of the results indicates that the large
number of different pesticide management techniques are
represented well by SWAT.
Copyright © 2012 John Wiley & Sons, Ltd.
Temporal analysis

Statistically significant Pearson’s correlation coefficients
(p< 0.05) were found between all output variables as
monthly averages (Table V). As expected, sediment loads
were highly correlated (r> 0.7) to streamflow, whereas
nitrate and chlorpyrifos were moderately (0.4> r> 0.70)
and diazinon (0.2> r> 0.4) was weakly correlated with
streamflow. This indicates that although runoff events are a
factor in determining the fate and transport of nutrients and
pesticides, the timing of applications may play a larger role.
This is especially true for the pesticide time series shown in
Figures 8 and 9, where the pesticide load peaks are not
necessarily aligned with streamflow and sediment load
peaks. For example, streamflow peaks in March 1995
(Figure 5), whereas chlorpyrifos and diazinon peak in
January 1995 (Figures 8 and 9, respectively). Further,
predicted chlorpyrifos and diazinon loads at the watershed
outlet were significantly correlated to the applications over
the watershed (p< 0.05). Limiting the amount of pesticide
applied during the wet months (December through March)
significantly reduces large pesticide runoff events. Although
the majority of pesticide applications are during the summer
growing season, the correlation between pesticide applica-
tions and loads during the growing season was not
significant (p> 0.05). This is largely due to the lack of
significant runoff events for pesticide transport during the
summer season. This result is in agreement with other
pesticide runoff studies in California’s Central Valley (e.g.
Dubrovsky et al., 1998; Luo et al., 2008).
The correlation between nitrate, chlorpyrifos and

diazinon loads to sediment loads was also expected. Surface
water runoff events generate sediment losses while
concurrently generating nitrate, chlorpyrifos and diazinon
loses. Therefore, the relationship between pollutant loads
and sediment losses may represent co-variance between
streamflow and sediment loads. Both chlorpyrifos and
diazinon are attracted to sediment particles, and therefore, a
positive correlation is physically based and represented in
the model. As expected, based on their soil adsorption
coefficients, chlorpyrifos loads were better correlated to
sediment loads than diazinon.
DISCUSSION

Calibration ofmodels at the watershed scale is a challenging
task because of the large number of uncertainties that may
exist. The Sacramento River watershed includes data and
Hydrol. Process. 27, 236–250 (2013)
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conceptual model uncertainties such as (1) lack of water
diversion data for agricultural and human consumption (as
well as wastewater discharge), (2) lack of irrigation use,
agricultural management and crop planting data within the
watershed, (3) lack of complete understanding of surface
and groundwater interactions and (4) lack of knowledge of
construction projects that could produce large amounts of
sediment, as well as other unknown human activities that
will have a large impact on hydrology andwater quality. For
some cases, the effects of these uncertainties may render
modelling of a watershed impossible. In this study,
parameters with uncertainties in agricultural management
practices, such as the amount and timing of fertilization,
were varied for each crop and subbasin. For example, the
parameters affecting fertilizer application, such as the
amount and application timing, were varied for each crop
and subbasin. This technique allows for spatial variation
of management techniques that in turn provide better
agricultural management representation.
Two points are worth noting regarding calibration and

validation. Firstly, the NS objective function contained 14
observed variables (streamflow, sediment, nitrate and
pesticides for multiple gauging stations), and calibrating
the model for any one variable would have produced
much better results for that variable at the expense of the
other variables. For example, calibrating for sediment
load at the Colusa Basin Drain outlet alone produced an
NS of 0.41 during calibration, but decreased to 0.11 when
all other variables were included in the objective function.
Gatzke and Zhang (2011) developed a SWAT model for
the southern portion of the Colusa Basin Drain that
resulted in an NS of 0.43 for sediment concentration. This
type of phenomenon is termed the ‘conditionality
problem’, where the results from one variable are allowed
to suffer so that other output variables have more accurate
results. In SWAT, this is due to the presence of global
parameters (single parameters that represent the whole
watershed). Examples of these parameters in SWAT are
SURLAG (surface runoff lag time coefficient) and
SPCON (channel re-entrained linear parameters). The
goal, therefore, is to achieve the highest possible NS
coefficients for all variables and gauging stations.
Secondly, ignoring the calibration constraints may also

produce better calibration and validation results but may
result in unrealistic model parameterization. For example,
our initial constraint was to vary the Curve Number by
�25% from the original value (SCS, 1984) to better
represent agricultural management techniques. Varying
the Curve Number by �50% may result in better
simulation statistics by increasing or decreasing surface
runoff/infiltration by a large amount, but the land use
representation may not be realistic. An example of this
misrepresentation would be increasing the Curve Number
from 69 to 98 (representing a pasture to paved parking lot
transition) to increase the amount of water runoff.
Although the simulation results may appear accurate,
the representation of the land use is not. This is a problem
of model non-uniqueness, where the combination of
multiple parameter sets may give similar results. This is
Copyright © 2012 John Wiley & Sons, Ltd.
why expert knowledge is needed prior to model
construction to ensure the model adheres to constraints
of the conceptual model.
The 95PPU represents a combined model prediction

uncertainty, which includes uncertainty resulting from the
non-uniqueness of model parameters, conceptual model
uncertainties and input data uncertainties. For this paper,
the combined effect of all uncertainties is depicted by the
p-factor and r-factor uncertainty statistics. In the initial
calibration iteration, 99% of the sediment loads at the
Sacramento – Freeport gauge were within the 95PPU
band, but the r-factor was very large (2.26). This result
illustrates that the uncertainty in the hydrologic or
conceptual model is great with respect to determining
sediment loads at this location. The large r-factor for the
initial calibration iteration is likely due to two reasons: (1)
initial calibration iterations have large parameter ranges
and thus large uncertainties and (2) an omission of
modelled agricultural management practices (best man-
agement practices, tilling etc.) that have an effect on
sediment losses. In the final iteration, 67% of the
observed data were bracketed by the 95PPU band, and
the r-factor was 0.80. Therefore, a balance was found
between parameter representation and the amount of
prediction uncertainty. This is largely due to a refinement
(decrease) in the sediment and agricultural management
parameter ranges, leading to a more accurate simulation
of sediment.
SUMMARY AND CONCLUSIONS

The SWAT was applied and evaluated on the Sacramento
River watershed in northern California. Streamflow and
agricultural pollutants, such as sediment, nitrate, chlor-
pyrifos and diazinon, were calibrated and validated at
multiple sites throughout the watershed using the SUFI-2
uncertainty analysis and calibration program. Considering
the conceptual model uncertainty (e.g. water transfers,
agricultural management practices), as well as input data
and model parameter uncertainty in such a large-scale
hydrological and water quality model, SWAT satisfac-
torily simulated streamflow, sediment, nitrate, chlorpyr-
ifos and diazinon loads. The incorporation of a flood weir
routing methodology into the SWAT code greatly
increased the pre-calibration NS coefficient at the
watershed outlet from �0.26 to 0.87.
The SWAT satisfactorily captured a large amount of

uncertainty within the Sacramento River watershed. The
uncertainty analysis results indicate that most of the
observed data were within the corresponding 95PPU band
for streamflow and agricultural pollutants, whereas the
r-factor results reflected the amount of uncertainty in each
model parameter. Varying model input parameters did not
lead to a large 95PPU band for streamflow. This indicates
that the reservoir inflow to the watershed has a larger
influence on streamflow than does the model parameters.
The 95PPU bands for the agricultural pollutants were
large, indicating that there is large uncertainty in the
Hydrol. Process. 27, 236–250 (2013)
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conceptual model of the pollutant parameters, as well as
the representation of the parameters themselves. This
study provides a strong basis for further studies using
uncertainty analysis to calibrate and validate hydrologic
models. Also, the simulation of hydrology and agricul-
tural pollutant loads was of reasonable accuracy, allowing
the Sacramento River watershed model to be used for
further scenario analysis.
Temporal analysis indicated that all output variables

(streamflow, sediment, nitrate, chlorpyrifos and diazinon
loads) were significantly correlated to each other
(p< 0.05). Sediment is highly correlated to streamflow,
whereas nitrate, chlorpyrifos and diazinon were only
moderately correlated to streamflow. This indicates that
the timing of agricultural management practices likely
plays a large role in agricultural pollutant fate and
transport. This is especially true for chlorpyrifos and
diazinon, where a significant correlation was
found between pesticide application and pesticide load
(p< 0.05). Limiting the amount of pesticide applications
during the wet, winter season will reduce pesticide runoff.
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