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s u m m a r y

This study presents a comprehensive investigation of the State Soil Geographic Database (STATSGO) and
the Soil Survey Geographic Database (SSURGO) soil databases for their applications in hydrologic model-
ing practices, and provides detailed instructions on soil data aggregation. Two types of soil data aggrega-
tions are developed and improved for the preparation of soil input data: (1) spatially-based aggregation
for hydrologic models which require one representative soil profile for each spatial units of modeling
simulations; and (2) taxonomy-based aggregation to handle the potential edge-matching issues in
SSURGO, i.e. the artificial split of a soil type by the boundary of soil survey areas. The developed approach
and program were applied at the spatial scales of soil survey area and watershed in California, U.S. rep-
resenting hydrologic simulation domains with areas at the magnitudes of 1000 km2 and 10,000 km2,
respectively. Edge-matching issues were identified for more than 20% of the involved soil map-units
for both cases, about 90% among which were handled by the proposed approach in this study. The naming
inconsistency in soil taxonomy was recognized as one of the causes for remaining issues. The reductions
of soil map-units and components numbers before and after the aggregation are less than 10%, indicating
that the proposed procedure has the capability to effectively handle the edge-matching issues while
maintaining spatial resolution of the soil data.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Soil data preparation is usually one of the first steps in initializ-
ing hydrologic simulations. In addition to the values of soil proper-
ties, the spatial resolution of soil input data also has significant
effects on the model performance (Geza and McCray, 2007; Peschel
et al., 2006; Singh et al., 2011). The Soil Survey Geographic Data-
base (SSURGO) is the most detailed soil survey database for the
United States. Developed by the U.S. Department of Agriculture
(USDA), the database is available at a range of scales between
1:12,000 and 1:24,000 (USDA, 2011). SSURGO is considered an im-
proved version of the State Soil Geographic Database (STATSGO)
which is a generalized soil map at a scale of 1:250,000. Both dat-
abases share similar data structures and formats. The landscape
is spatially segmented with soil map-units (MU). Soil in each MU
is sampled for soil properties in various horizons, and reported
by grouping into soil components. Soil components are not
geo-referenced, but mainly characterized by the coverage fractions
in the respective MU. Data for STATSGO and SSURGO are organized
in ESRI shapefiles (for the spatial locations of MUs) and text files
(for attribute data of soil properties), and freely available from
ll rights reserved.
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the Soil Data Mart (http://soildatamart.nrcs.usda.gov/). SSURGO is
still under development and does not cover the entire United
States. Therefore, SSURGO may be used in conjunction with STATS-
GO for the full coverage of a large domain of hydrologic simulation
(Gatzke et al., 2011).

STATSGO and SSURGO have been widely used in hydrologic
models such as the Agricultural Nonpoint Source (AnnAGNPS)
model (Polyakov et al., 2007), the Flood Hydrograph Package by
the Hydrologic Engineering Center (HEC-1) (Smemoe et al.,
2004), the Hydrological Simulation Program-Fortran (HSPF)
(Johnson et al., 2003), the European Hydrological System (MIKE
SHE) (Sahoo et al., 2006), and the Soil and Water Assessment Tool
(SWAT) (Geza et al., 2009; Luo et al., 2008; Santhi et al., 2006; Wu
and Johnston, 2007). However, the original data format in STATSGO
and SSURGO is not suitable for most hydrologic models, and data
extraction and pre-processing are usually required for preparing
model input data of soil properties. Many hydrologic models, espe-
cially those field-scale or spatially distributed models with rela-
tively small modeling units, ask for a single representative soil
profile for each modeling unit which covers one or multiple
MU(s). Most existing studies only focus on soil data extraction
from STATSGO and SSURGO (Peschel et al., 2003, 2006; Sheshukov
et al., 2009; Winchell et al., 2011); however, the geo-referencing of
the soil data to the appropriate spatial scale of a hydrologic simu-
lation is not sufficiently discussed. The widely used approach for
soil data aggregation is to assume the soil properties in a specific
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area could be represented by the soil profile of the most extensive
component, or ‘‘dominant component’’, which is the one with max-
imum fraction area in the MU. For example, Miller and White
(1998) used STASTGO dominant soils texture grids for eleven soil
layers for the conterminous United States in a continental distrib-
uted modeling system. A similar method was applied to SSURGO
for deriving soil parameters for SAC-SMA (Sacramento Soil Mois-
ture Accounting) model (Anderson et al., 2006; Zhang et al.,
2011). However, each MU in both STATSGO and SSURGO may have
multiple components, and sometimes the dominant component
may only cover a small fraction of the total area of the unit. For
example, the MU of CA355 in STATSGO has 21 components and
the fraction area of the dominant component is only 8%. In this
case, soil data taken from the dominant component is not neces-
sarily representative to the entire MU.

A more reasonable soil profile can be generated based on area-
weighted average of soil data in all available components within a
certain spatial area. This process is referred as ‘‘soil data aggrega-
tion’’ (FGDC, 1997), and can be applied to a single MU or multiple
MUs representing a spatial unit in the modeling domain. For exam-
ple, USDA developed the ‘‘Soil Data Viewer’’ (http://soils.usda.gov/
sdv/) for soil data aggregation for typical soil parameters based on
area-weighted averaging. In the program, data processing is only
performed for the top soil horizon while multiple horizons are
usually required for hydrologic modeling. Similar methods have
been previously applied to soil and hydrologic studies (Buell and
Markewich, 2004; Davidson and Lefebvre, 1993; Smith et al.,
2005). However, a consistent and systematic procedure for the
aggregation of soil data is not yet available for the input data prep-
aration of a general model. Additionally, some of the important
issues in the data processing, e.g. the construction of soil horizons
and the determination of accumulative soil depth, were not dis-
cussed in existing studies.

In addition to soil data aggregation, another hindrance of the
application of SSURGO in hydrologic models has been identified
recently. For the development of SSURGO, the United States is
divided into soil survey areas (SSAa), and soil data for SSAs are
incorporated into the SSURGO database as completed. Therefore,
one soil type across the boundaries of SSAs would be artificially
separated the segments with different MU identifications. For adja-
cent SSAs, soil surveys may be conducted in different time periods
with different personale and surveying methods, leading to incon-
sistencies between soil surveys. This problem was first introduced
in our previous study (Gatzke et al., 2011) and referred as the
‘‘edge-matching issue’’. Even with efforts to minimize the disconti-
nuities along SSA boundaries (USDA, 1999), the issue remains in
SSURGO version 2.0. To minimize the impacts of edge-matching
problem in hydrologic simulations, Gatzke et al. (2011) proposed
an approach to aggregate soil data by great group taxonomy. The
method reduced edge matching errors between SSAs by 41% in
the testing area of California’s San Joaquin Valley watershed. How-
ever, significant reduction on spatial resolution of the soil data was
also observed: the resultant soil data after taxonomy-based aggre-
gation resulted in only 44 unique soil types (or 257 by intercepting
with 15 delineated sub-basins), while in the original SSURGO there
are more than 1000 MUs and components. After the processing,
SSURGO is actually degraded to a spatial resolution even lower
than STATSGO, for which 67 MUs and about 1000 components
are included in this area. While the taxonomy-based aggregation
is promising in minimizing the edge-matching errors, therefore,
application of this approach to the entire study area of the hydro-
logic simulation may significantly compromise the advantage of
SSURGO in representing the spatial variability on soil properties.

This study aims to develop an approach for soil data aggregation
and for the appropriate handling of the edge-matching issues. Spe-
cific study objectives include: (1) to develop general method for
soil data extraction and aggregation from STATSGO and SSURGO
databases; (2) to investigate the potential impacts of the edge-
matching issues on hydrologic simulations and develop soil aggre-
gation approach to minimize the impacts; and (3) to implement
the proposed approaches and test them at both SSA and watershed
scales. Although SSURGO and STATSGO are used as data sources for
the development and demonstration in this study, the resultant
approaches are also anticipate to provide useful information for
the soil parameter preparation based on other data sources such
as the Canada National Soil Database, China Soil Scientific Data-
base, and European Soil Database.
2. Soil data aggregation

In STATSGO and SSURGO, one MU is geo-referenced to a poly-
gon in the spatial dataset, while the geographic locations of soil
components within a MU are not explicitly documented. Data of
soil properties are organized by component (table ‘‘component’’)
and its horizons (table ‘‘chorizon’’) in the attribute tables. Taking
the MU with key of 462782 in Merced County of California as an
example, the geographic location of the MU can be easily deter-
mined based on the spatial data provided in SSURGO (Fig. 1). Eight
components are identified in the MU, but the respective geo-
graphic information is not available. The components are charac-
terized by their key, name, and percent coverage in the data
table ‘‘component’’. Two of the components (key of 636287 with
50% coverage, and 636288 with 35% coverage) are considered as
major components while other minor components are called
‘‘inclusions’’. Only major components are provided with soil hori-
zon data in the data table (‘‘chorizon’’). These data are frequently
used in hydrological simulations, and could be categorized as (a)
horizon-dependent properties (available water content, bulk den-
sity, saturated hydraulic conductivity, clay/sand/silt contents, or-
ganic matter content, erodibility, and electrical conductivity), and
(b) surface properties (hydrologic soil group and soil albedo).

Soil data aggregation is the process in which soil data from all
components of one or multiple MU(s) representing a spatial unit
of the modeling domain was aggregated into one soil profile, so
that the resultant soil data could be geo-referenced and used in
spatially distributed modeling. Soil data aggregation in this study
is based on the depth-slicing algorithm, which has been previous
used for the data processing of STATSGO and SSURGO (Beaudette
and O’Geen, 2011; Gatzke et al., 2011; Luo, 2006; Miller and White,
1998; USGS, 1995). In general, the representative value of a soil
property at a given depth, s(z), is calculated as area-weighted aver-
age of the values at the same depth in all involved components:

SðzÞ ¼

X
i

½SiðzÞ � fi�
X

i

fi

ð1Þ

where i is a running index for the components with data at the
depth z, si(z) is the corresponding properties at depth z in compo-
nent i, and fi is the fractional area of i. Eq. (1) is also appropriate for
soil properties only defined at the surface, by setting z = 0. For
hydrologic soil groups which indicate the minimum rate of infiltra-
tion of the soil type, the descriptive grouping are aggregated based
on the numerical conversion with group A = 1, B = 2, C = 3, and
D = 4. These values are averaged by following Eq. (1), and then con-
verted back to letters using the same conversion (Burns et al.,
2004; USGS, 1995).

The general depth-slicing algorithm for soil data aggregation
was improved in this study by investigating the cumulative soil
depth in the soil profile after aggregation. Most existing studies
set this depth as the maximum value of cumulative soil depth in

http://soils.usda.gov/sdv/
http://soils.usda.gov/sdv/


Fig. 1. Relationships of soil map-unit (MU), components, and horizon data of soil properties, with MU of 462782 in soil survey area of CA647 as an example. (a) Shows the
geographic location of the MU; (b) shows attribute data associated with the MU.

Y. Luo et al. / Journal of Hydrology 464–465 (2012) 467–476 469
all involved components. This setting is designed to completely
capture the available data in all soil horizons, but may artificially
increase the water storage capacity in the resultant soil profile
compared to the original components. For example, when two
components with 500 cm and 1000 cm soil depths, respectively,
are aggregated, the resulting soil profile has a depth of 1000 cm.
By applying this algorithm to a large region, the overestimation
on the water storage capacity could be accumulated to have signif-
icant effects on hydrologic simulations. Previous studies indicated
that hydrologic models are highly sensitivity to the soil parameters
describing soil–water capacity, including field capacity, available
water content, and wilting point. The use of soil input data with
higher soil–water storage potentially decreases surface and sub-
surface runoff, especially at larger spatial scales.



Fig. 2. Demonstration of the soil aggregation approach for the soil map-unit of
462782 with two major components, (a) bulk density profiles in the two
components and as the area-weighted average; (b) porosity profile calculated from
the area-weighted average of bulk density.
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In this study, the cumulative soil depth of the representative
soil profile is determined by matching the total saturated water
content in the aggregated soil profile to that in the original compo-
nents to be aggregated:

Z zmx

0
shðzÞ ¼

X
i

R zmxi
0 ðsh;iðzÞfiÞ

� �
X

i

fi

ð2Þ

Sh;iðzÞ ¼ 1� sBD;iðzÞ=qg ð3Þ

where sh (dimensionless) is the porosity, zmxi (cm) is the cumula-
tive soil depth in component i, zmx (cm) is the cumulative soil depth
to be determined for the aggregated soil profile, and sBD and qg

(g cm�3) are soil bulk density and grain density (qg = 2.65), respec-
tively. There is no analytical solution in a general form for zmx in Eq.
(2), but the value of zmx can be determined by trial tests with 1 cm
increment along the soil profile. The proposed algorithm in Eq. (2)
generates an appropriate zmx by remaining the same total soil–
water storage as that reported in all involved components during
soil data aggregation.

As a demonstration of the depth-slicing approach and the
improvement on determining the cumulative soil thickness pro-
posed in this study, soil data in the two major components in the
MU462782 (Fig. 1 and Table 1) are aggregated. Based on the
reported bulk density, the total saturated water content in all in-
volved components can be determined as 39.34 cm (the right-hand
side of Eq. (2), details in Table 1). Illustrated in Fig. 2a is the area-
weighted averages of the bulk density determined by Eq. (1), while
in Fig. 2b is the corresponding profile of porosity by Eq. (3). By
matching the total saturated water content of the aggregated soil
profile to the reported value of 39.34 cm, the cumulative soil depth
for aggregation (zmx) was determined to be 101 cm (Fig. 2c). Com-
pared to the maximum soil depth with reported data in the original
components (i.e. 119 cm Table 1), the proposed approach in soil
data aggregation avoided an overestimation of total saturated
water content in the representative soil profile by 19% (Fig. 2b).

The soil property aggregated with Eq. (1) is a continuous step
function (Fig. 2a). Some hydrologic simulators only allow a limited
number of soil horizons as input data. For example, 10 soil hori-
zons are the maximum number of soil horizons in SWAT. There-
fore, the resultant soil properties from Eq. (1) may have to be
discretized according to the prescribed soil horizon structure. In
the development of CONUS-SOIL database (Miller and White,
1998), the STATSGO data were distributed into a set of 11 standard
soil layers with depths of 5,5,10,10,10,20,20,20,50,50, and 50 cm.
Similarly, the soil horizon structure used in Gatzke et al. (2011) had
8 layers with depths of 5,5,5,15,30,30,60, and 100 cm for SSURGO
data. For each layer, the representative values of soil properties are
calculated as average of the properties within the layer:
Table 1
Bulk density and porosity for the MU462782 in the SSURGO database.

Horizon Component 636287 (coverage = 50%)

Depth (cm) Bulk density (g cm�3) Porosit

1 0–38 1.66 37.36%
2 38–119 1.59 40.00%
3 119–130 NA

Notes: Bulk density was retrieved from SSURGO while porosity was calculated by Eq. (3
calculated as 37.36%�38 + 40.00%�(119–38) = 46.60 cm. Similarly, the value in 636288 is 2
two components is calculated by Eq. (1) as (46.60�50% + 28.97�35%)/(50% + 35%) = 39.34
SðkÞ ¼
R Zk2

zk1
sðzÞ

zk2 � zk1
ð4Þ

where k is layer index with soil depth from zk1 to zk2, and S(k) is the
layer-averaged soil property.

Based on the depth-slicing algorithm and the improvements
proposed in this study, the detail processes in soil data aggregation
are described as follows:

(1) To identify MUs according to the spatial units of the model-
ing domain, and extract soil data for all major components of
the involved MUs.

(2) To determine the cumulative soil depth for the representa-
tive soil profile (zmx) by Eq. (2).

(3) To aggregate required soil properties for each centimeter of
the soil profile, based on Eq. (1), until reaching zmx.
Component 636288 (coverage = 35%)

y Depth (cm) Bulk density (g cm�3) Porosity

0–53 1.57 40.75%
53–74 1.72 35.09%
74–84 NA

). The total porosity (or saturated water content) reported in component 636287 is
8.97 cm. Therefore, the area-weighted average of the saturated water content in the
cm.
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(4) (If applicable) to compute representative soil properties for
each soil layer according to the prescribed layer structure
up to zmx.

3. The edge-matching issue

As previously mentioned, the edge-matching issue is observed
in SSURGO when one soil type is divided by SSA boundaries and as-
signed as multiple MUs. The issue is illustrated in Fig. 1a. MU pairs
such as [466970, 462782], [466981, 462877], [466965, 462929],
[466956, 462813] represent landscapes artificially dissected along
the boundary between SSAs of CA642 (‘‘Stanislaus County, Califor-
nia, Western Part’’) and CA647 (‘‘Merced County, California, Wes-
tern Part’’). The issue is potentially associated with any pair of
MUs which are adjacent and across SSA boundary. In spatial anal-
ysis, the split MUs can be defined as two polygons sharing the line
segment of the SSA boundary. Even though soil data for both sides
of the boundaries are reliable, the artificial split has potential ef-
fects on hydrologic simulation, especially for the modeling projects
with a simulation domain over multiple SSAs. One example is the
Hydrologic Response Unit (HRU) distribution. HRU is a concept
widely used in watershed and catchment scale models to reduce
modeling complexity. In a sub-basin, areas with similar hydrologic
characteristics of land use, soil, and/or slope are lumped into a sin-
gle unit. This process requires continuous and consistent soil data
coverage for determining the expansive soil types in the sub-basin,
since only major soil types with spatial coverage larger than a
threshold would be considered in the HRU distribution. The artifi-
cial splits across SSA boundaries reduce the fractional area of a soil
type and thus potentially have effects on the soil types selected in
subsequent HRU distribution and model simulation. The edge-
matching issues may have serious implications, dependent on
the total fraction of involved MUs, when SSURGO data is used in
modeling surface hydrology at large scales.

Soil aggregation by great group taxonomy was proposed in our
previous study to minimize the impact of edge-matching issues on
the parameterization and simulation of hydrologic models (Gatzke
et al., 2011). The basic assumption is that, the artificially dissected
MUs could be recovered by aggregating their components with
common great group taxonomy. Therefore, the components of
one soil type across a SSA boundary can be programmatically
identified and aggregated based on the common taxonomy. The
Fig. 3. Demonstration (not drawn to scale) of soil data aggregation for handling the
edge-matching issue. Shown in the example are two adjacent soil map-units (MUs)
on the boundaries of two soil survey areas: 466970 in CA642 and 462782 in CA647
(Fig. 1a). Major components include 646276 (C1) and 646277 (C2) for MU466970,
and 636287 (C3) and 636288 (C4) for MU462782. C2 and C4 share the common
great group taxonomy of ‘‘Haploxerolls’’ and combined as a one soil type in this
study. See Table 2 for more details.
demonstration in Fig. 3 and Table 2 explains this process with
the adjacent MU pair [466970, 462782] across SSAs of CA642 and
CA647 as an example. A common taxonomy of ‘‘Haploxerolls’’
was identified in both MUs and aggregated as one soil type. The
processed data indicated that ‘‘Haploxerolls’’ is the dominant tax-
onomy (fraction area of 35%) in the combined MU, while it is not
dominant in either MU of the original data (Table 2). This example
demonstrated the impacts of artificial splitting of a soil type by
SSAs on the soil data interpretation, as well as the capability of
the proposed soil data aggregation in handling the edge-matching
issues.

Soil taxonomy provides a robust framework for soil grouping by
physical and chemical properties (USDA, 1999). For hydrologic
modeling, the utilization of taxonomy-based aggregation refines
the operational definition of soil type with soil classification rather
than artificial structure of soil database or soil sampling. Aggrega-
tion of soil data by taxonomy generates continuous and consistent
soil coverage to ensure accurate distribution of HRU and other soil
data related configurations for hydrologic simulations. Appropriate
characterization of soil properties within the context of hydrologic
modeling have large impact on the model performance on water
and water quality processes. Gatzke et al. (2011) indicated that,
for instance, SWAT predictions on surface hydrologic processes
including surface runoff and sediment yield from the San Joaquin
Valley watershed could be improved with soil data aggregated by
taxonomy, compared to that by MU.

The primary problem in using taxonomy to solve edge-match-
ing issue is the loss of spatial resolution in soil data. In a large area
of hydrologic simulation domain, the total number of distinct taxo-
nomies is usually significantly less than that of MUs. For example,
in our previous case study (Gatzke et al., 2011), taxonomy-based
aggregation of soil data was applied to all MUs in the study area
even though the majority of MUs were not located on SSA bound-
aries. Therefore, the processing could be significantly simplified by
ignoring the spatial analysis such as the determination of whether
a MU is on the SSA boundaries and whether two MUs are adjacent.
However, taxonomy-based aggregation for all components in the
domain of hydrologic simulation significantly reduced the spatial
variability in soil properties. By applying this method to the San
Joaquin Valley watershed, the original >1000 MUs in SSURGO were
aggregated into only 44 taxonomies, or 257 based on the intersec-
tion with subbasins (Gatzke et al., 2011). Consequently, the advan-
tage of high resolution soil data in SSURGO was actually not
reflected in this case.

Therefore, the major limitation of the taxonomy-based soil data
aggregation in the previous study is that spatial locations and rela-
tionships of MUs were not considered. In order to take advantage
of the taxonomy-based aggregation in handling the edge-matching
issue while to remain the high spatial resolution of SSURGO, the
following improvements are applied to the previous approach:
(a) only MUs located on the SSA boundary are considered in the
soil data aggregation; and (b) aggregation is conducted for each
group of adjacent MUs across the SSA boundaries. Three steps
are involved in the new approach:

(1) to identify pairs of MUs which share the line segments of
SSA boundaries;

(2) to group the identified MU pairs with common boundaries
as spatial units for potential soil data aggregation. Grouping
is necessary because a MU may be adjacent to multiple MUs
on the other side of a SSA boundary (one-to-multiple), and
even multiple-to-multiple cases may exist. For example, if
MU1 in SSA1 shares the SSA boundary with MU2 and MU3
in SSA2, there will be two MU pairs of [MU1, MU2] and
[MU1, MU3] but considered only as 1 group; and



Table 2
Data and statistics for the components involved in the demonstration (Fig. 3) of soil data aggregation for handling the edge-matching issue. Dominant components in the
respective MU are highlighted.

Map-unit key (area in acre) Component key Great group Component % coverage in the MU

466970 (1000) C1 = 646276 Haploxererts 50
C2 = 646277 Haploxerolls 35

462782 (1670) C3 = 636287 Chromoxererts 50
C4 = 636288 Haploxerolls 35

Combined (2670) C1 Haploxererts 19
C3 Chromoxererts 31
C2 + C4 Haploxerolls 35
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(3) to perform soil data aggregation. Spatially, the MU groups
identified in (1) are merged together to be a new MU. For
attribute data of soil parameters, the components with com-
mon taxonomy are aggregated for a single representative
soil profile as a new component. Finally, fraction areas of
all components in the new MU are recalculated.

The MUs grouped in the step (2) are considered to be associated
with the edge-matching issues, while only a portion of them could
be actually handled in the subsequent step (3). The fraction (num-
ber of handled over identified MUs) is reported as an indicator for
the performance of the proposed approach in handling edge-
matching issues. One special case is for the MUs of water. Some
SSA boundaries are actually delineated by major rivers. For exam-
ple, the boundaries of CA642 and CA644, CA647 and CA648, CA651
and CA653, and CA651 and CA654 in California are along the San
Joaquin River. In the proposed data processing, MUs representing
water are excluded from the identification of MU pairs for taxon-
omy-based aggregation, so that the SSA boundaries by streams
are automatically excluded in handling edge-matching issues.
4. Computer implementation

For automating the soil data aggregation processes proposed in
this study, a program was developed based on ArcGIS ArcObjects
for Microsoft .NET framework (Fig. 4). The program was designed
for the following processes:

(1) Soil data extraction: To extract data of soil properties from
the tabular source data of STATSGO or SSURGO into an out-
put database in Microsoft Access format. The extracted data
is organized by component, i.e. each record is for one com-
ponent with both surface properties (MU key, component
key, great group taxonomy, area, fraction area in the MU,
number of horizons, hydrological soil group, albedo, and
cumulative soil layer thickness) and horizon-dependent
properties (horizon thickness, bulk density, available water
content, saturated hydraulic conductivity, erodibility, and
percent contents of organic carbon content, clay, silt, sand,
and rock fragment content). Included soil data and data
structure in this study are following the template in Arc-
SWAT (Winchell et al., 2011), a pre-processor for SWAT.

(2) Edge-matching issue handling: If the input data includes
multiple SSAs, this option is available for handling potential
edge-matching issues. MU pairs which are adjacent with
each other and belong to different SSAs are identified by spa-
tial analysis tools provided in the ArcObjects. All identified
pairs are processed based on the approach discussed in the
last section; and

(3) Soil data aggregation: Soil data can be aggregated with the
provided map for the delineation of modeling domain. A rep-
resentative soil profile will be generated for each of the
hydrologic modeling units such as catchments and fields.
The program generates data in Microsoft Access format by fol-
lowing the soil data structure required by ArcSWAT. Therefore,
the program output can be directly applied as user soil data for
HRU distribution with ArcSWAT to develop a SWAT project. It is
worthy to note that application of the soil data processing docu-
mented in this study is not limited by a specific hydrologic model.
In fact, a comprehensive set of soil properties is extracted and
aggregated in the program (listed above). Those properties are gen-
erally sufficient for parameterizing any hydrologic simulations. The
program will be available on the developers’ website (http://
agis.ucdavis.edu/) for public access. Meanwhile, individual re-
quests could be fulfilled by the corresponding authors.

5. Case studies

5.1. Two adjacent SSAs

Two adjacent SSAs of CA642 (with total coverage of 1580 km2)
and CA647 (2410 km2) (Fig. 1a) are used as the first demonstration
of the aggregation of soil data and the handling of edge-matching
issue. There are 106 and 189 distinct MUs in the two SSAs, respec-
tively, and some are represented as multiple-part polygons. Both
the SSAs have 25 MUs located at their shared boundaries, account-
ing for 18% of the area in CA642 and 25% of CA647. For the two SSAs
as a whole, MUs which are associated with the edge-matching is-
sues account for 22% areas of the total area. The program developed
in this study identified 27 MU pairs of MUs which are across the SSA
boundary and adjacent to each other and generated 22 potential
groups of MUs for soil data aggregation (Table 3). Finally, common
great group taxonomies in different MUs were observed in 19 MU
groups, for which the components with common taxonomies were
aggregated. We conclude that 86% (19 divided by 22) of the edge-
matching issues in the study area of CA642 and CA647 are handled
with the proposed approach. In the remaining three groups (#1, 10,
and 20) (Table 3), no common great group taxonomy was found.
Further investigation indicated that the change of taxonomy classi-
fication over time is the main reason for the approach inability in
solving edge-matching problems in the 3 groups. According to the
10th Edition of Keys to Soil Taxonomy by USDA, Chromoxererts
was classified as Haploxererts, and Xerochrepts as Haploxerepts
(Culman et al., 2010; USDA, 2006). In addition, classification was
changed from Haplaquolls to Endoaquolls according to changes in
Taxonomy in 1992 (USDA, 2009). With above information, the
edge-matching issues in the three groups of #1, 10 and 20 (Table
3) could also be handled based on the proposed approach. This sug-
gested that the investigation of changes of taxonomy classification
over time could significantly improve the proposed procedure in
handling the edge-matching issues.

5.2. The san Joaquin Valley watershed

The San Joaquin Valley watershed is located in the middle of
California’ Central Valley. The total area of the watershed is

http://agis.ucdavis.edu/
http://agis.ucdavis.edu/


Fig. 4. Screenshot of the computer program implementing the soil aggregation approach developed in this study.
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approximately15,000 km2 and mainly enclosed by the SSAs of
CA642, CA644, CA647, CA648, CA649, CA651, and the northern
portion of CA653 (Fig. 5). Minor areas (7%) of the study domain
are covered by other SSAs which are not included in this study. De-
tailed information on the site description is provided in our previ-
ous studies (Gatzke et al., 2011; Luo et al., 2008).

In total there are 1207 MUs (with 1422 components and 44
great-group taxonomies) in the watershed and 156 of them are
associated with the edge-matching issues, indicating a fraction
area of 27%. Out of the identified MUs with the issue, 140 MUs
(90%) were handled by the developed data processing and merged
into 39 new MUs. During the processing, soil data in 121 compo-
nents were aggregated into 81 new components with common
classifications of taxonomy. Finally, the processed soil map and
data have 1106 MUs and 1382 components. In summary, the
developed method handled majority of the edge-matching issues
while generally kept the spatial resolution and variability in the
original soil data.
6. Discussion and conclusion

Procedures of soil data processing to prepare input data for
hydrologic models were developed and implemented in this study.
The aggregation method generates a single soil profile for each of
the modeling units of the simulation domain based on soil data
in all components of the respective geographic region. Compared
to the simple approach using only the dominant component, the
method with area-weighted averages from all involved compo-
nents preserved the intrinsic spatial resolution and variability in
the source data and provided more representative soil parameters
for the hydrologic models. In this study, the cumulative soil depth
in the resultant soil profile was determined by matching the total
saturated water content in the soil profiles before and after the soil
data aggregation. This was considered as an improvement to the
conventional depth-slicing algorithm in soil data processing, in
which the cumulative soil depth for aggregation was set as the
maximum over all involved components and the total water stor-
age may be artificially increased during the aggregation.

This study also investigated the nature and the solution of edge-
matching issues in SSURGO soil data across multiple soil survey
areas. For hydrologic simulations, the artificial splits of MUs and
associated components by SSA boundaries may mislead the deter-
minations of representative soil types in the simulation domain.
The proposed solution for the issue is to identify and restore the
split components based on their common great group taxonomy.
Two case studies were conducted to demonstrate the edge-match-
ing issue and the capability of the developed methods in handling
the issue. In a small area enclosed by SSAs of CA642 and CA647
(4000 km2) 20% of the included MUs are associated with the
edge-matching issues, while the ratio is 27% for the watershed of
San Joaquin Valley (15,000 km2). The developed approach by tax-
onomy-based aggregation solved the edge-matching issues for
about 90% of the identified MUs in both studies. The reductions
of MUs and components numbers before and after the aggregation
are less than 10%, indicating that the soil-data preparation proce-
dure has the capability to effectively handle the edge-matching is-
sues and maintain the spatial resolution in the SSURGO soil
database. The study also indicated that further investigation on
the classification changes of taxonomy over time will significantly
improve the performance of this approach in handling edge-
matching issues in SSURGO.

The effects of the edge-matching issue on hydrologic simula-
tions are associated to the spatial scale of modeling units, rather



Table 3
List of the grouped MUs which are adjacent and across the boundary of CA642 and CA647.
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than the scale of the simulation domain. If a simulation (such as
grid-based models) is based on modeling units with areas smaller
than typical MUs, the edge-matching will not be a problem by
considering the small fraction of modeling units across SSAs to
the total units. Most of the hydrologic models at watershed or
catchment scales, however, have spatial resolutions significantly
larger than the typical MU size (e.g. median size of about 1 km2

in California). Examples are provided in this study for the effects



Fig. 5. The San Joaquin Valley watershed and enclosed soil survey areas of SSURGO.
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of the edge-matching issue on the determination of representative
soil types and the distribution of HRUs. Future studies are needed
to determine the effects of the edge-matching issues and the pro-
posed solution on hydrologic simulations at various spatial scales.
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