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Abstract:

Bracketing the uncertainty of streamflow and agricultural runoff under climate change is critical for proper future water resource
management in agricultural watersheds. This study used the Soil and Water Assessment Tool (SWAT) in conjunction with a
Latin hypercube climate change sampling algorithm to construct a 95% confidence interval (95CI) around streamflow, sediment
load, and nitrate load predictions under changes in climate for the Sacramento and San Joaquin River watersheds in California’s
Central Valley. The Latin hypercube algorithm sampled 2000 combinations of precipitation and temperature changes based on
Intergovernmental Panel on Climate Change projections from multiple General Circulation Models. Average monthly percent
changes of the upper and lower 95CI limits compared to the present-day simulation and a statistic termed the “r-factor” (average
width of the 95CI band divided by the standard deviation of the 95CI bandwidth) were used to assess watershed sensitivities.
95CI results indicate that streamflow and sediment runoff in the Sacramento River watershed are more likely to decrease under
climate change compared to present-day conditions, whereas the increase and decrease for nitrate runoff were found to be equal.
For the San Joaquin River watershed, streamflow slightly decreased under climate change, whereas sediment and nitrate runoff
increased compared to present-day climate. Comparisons of watershed sensitivities indicate that the San Joaquin River watershed
is more sensitive to climate changes than the Sacramento River watershed, which is largely caused by the high density of
agricultural land. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

The uncertainty associated with climate change has been
described as “persistent,” “deep,” and “irreducible”
(Preston, 2005). These uncertainties exist at the global
(e.g. climate feedback processes and climate sensitivity)
and regional scale (e.g. greenhouse gas emissions and
population growth). Many General Circulation Models
(GCMs) have been created to investigate the effects of
increasing greenhouse gas concentrations on the climate.
These studies indicate an increase in global mean
temperature, on average, between 1.1 and 6.4 �C
compared to the 20th century average temperature
depending on the greenhouse gas emission scenario
[Intergovernmental Panel on Climate Change (IPCC),
2007]. End of 21st century GCM projections for
California, which is the area of this study, show an
increase in air temperature of 1 to 4.5 �C (e.g. Maurer,
2007; Cayan et al., 2008; Ficklin et al., 2012a). Changes
in precipitation, however, are more speculative than
temperature, especially for smaller regions where GCMs
predict a wide range of positive and negative precipitation
projections compared to present-day totals. In California,
for example, GCMs project a wide array of precipitation
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projections, with a median projection of an 8% decrease
from present-day precipitation totals (Cayan et al., 2008;
Ficklin et al., 2012a). Any change in temperature and
precipitation will affect the hydrological cycle, resulting
in a large variation of streamflow and agricultural
pollutant fate and transport. Climate change uncertainties
create a range of challenges for scientific investigations
and decision-making processes. Ideally, information from
each plausible climate change scenario should be used to
make informed risk management decisions at the
watershed level (Preston, 2005).
The integration of risk management considerations is

not a trivial matter, particularly for systems with multiple
uncertainties. Stochastic simulations such as Monte Carlo
and Latin hypercube analysis are useful for achieving
such integration for complex modelling of the environ-
ment. Baalousha (2006) used a modified Latin hypercube
sampling (LHS) technique with success to assess
groundwater pollution risk. Seibert and McDonnell
(2010) used a Monte Carlo technique to bracket the
95% confidence interval (95CI) of streamflow simulations
from different land-cover regimes in Oregon, USA. Many
other studies use LHS as a way to collect information
about the hydrological characteristics of a region for a
wide array of model input parameter sets (e.g. Abbaspour
et al., 2004; Yang et al., 2008). For this study, we employ
the LHS method because of its widespread use in
uncertainty analyses and ease of use, as it is included in



Figure 1. Sacramento and San Joaquin River watersheds modelled in the
study. The numerical value refers to the ID in Table I
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the popular Soil and Water Assessment Tool Calibration
Uncertainty Program (SWAT-CUP; Abbaspour et al.,
2007). Furthermore, in comparing uncertainty analysis
methods, Yu et al. (2001) and Melching (1992)
investigated the efficiency of different uncertainty
analysis sampling methods, concluding that LHS could
generate representative sampling more efficiently than the
Monte Carlo technique due to uniform sampling of the
parameter space.
Although a plethora of studies have investigated the

changes in surface runoff and streamflow associated with
climate change, only a few have investigated how warmer
climates and precipitation changes could affect water
quality (e.g. Cruise et al., 1999; Chaplot, 2007; Ficklin
et al., 2010). The relationship between precipitation
changes and increased agricultural pollutant runoff is
easily understood, as rainfall impacts and runoff are the
driving mechanisms for pollutant transport within water-
sheds. The relationship between temperature increases and
agricultural pollutant runoff is not as easily understood due
to changes in evapotranspiration and irrigation water use.
Our previous study (Ficklin et al., 2010) found that
agricultural pollutant runoff decreased with increases in
temperature.
The goal of this study is to assess the sensitivity of

climate change on the Sacramento and San Joaquin River
watersheds using a stochastic method with bracketed
output from multiple GCMs and emission scenarios to
determine the 95CI of streamflow and agricultural
pollutant transport (sediment and nitrate) using SWAT
(Arnold et al., 1998). These watersheds drain into the
Sacramento–San Joaquin Delta (Delta), which in recent
years has seen an appreciable decline in aquatic species,
attributed in part to an increase of in-stream agricultural
pollution (Werner et al., 1999). Therefore, this type of
analysis is extremely beneficial to all parties interested in
the health and security of the Delta. The probabilistic
climate change assessment offers a useful framework for
managing decision-making events by uncertainty.
METHODS

Study sites

Sacramento River watershed. The Sacramento River
watershed area, as defined by this study, is approximately
23 300 km2 (Figure 1). The Sacramento River monitoring
gauge maintained by the United States Geological Survey
(USGS) at Freeport, CA (USGS gauge #11447650), is the
outlet of the simulated watershed. The watershed
boundary is defined by the discharge inlets listed in
Table I. The western side is bordered by the Black Butte
Dam on Stony Creek; the eastern side is bordered by the
Oroville Dam on the Feather River, the Yuba River at
Marysville USGS gauge, the Camp Far West Dam on
Bear River, and the Folsom Dam on the American River;
the northern side is bordered by the Shasta Dam on the
Sacramento River and the Whiskeytown Dam on Clear
Creek. The study area includes the majority of agricultural
Copyright © 2012 John Wiley & Sons, Ltd.
land in the northern Central Valley, from Sacramento, CA,
to Red Bluff, CA. The majority of the land use in the study
area is rangeland composing approximately 62% of the
total watershed area, whereas agricultural land composes
approximately 33% of the total area. The remaining 5%
contains urban land use, waterways/wetlands, and forested
areas.
The Sacramento Valley has a Mediterranean climate

characterized by hot summers and mild winters, with an
average temperature ranging from 4 �C in the winter to
above 32 �C in the summer (Guo et al., 2007). Mean
annual precipitation ranges from 36 to 64 cm, with most
of the precipitation occurring between November and
April. The soils of the valley are mostly fine grained with
low permeability (Troiano et al., 2001). Water require-
ment for crops grown on 8500 km2 is dependent on
irrigation from surface water or groundwater (DWR,
1998). Human intrusion for urban and agricultural uses
has greatly disrupted the natural hydrology in this region.

San Joaquin River watershed. The San Joaquin River
watershed, as defined by this study, is 14983 km2, with
approximately 66% of the total area in the San Joaquin
Valley, 15% in the Coastal Range, and 19% in the Sierra
Nevada mountains (Figure 1). The USGS monitoring site
at Vernalis (USGS gauge #11303500) is the outlet for the
watershed. The USGS gauges of the upper San Joaquin
River at the Friant Dam, the upper Merced River at the
Hydrol. Process. (2012)
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Table I. Locations of watershed inlets and outlets for the Sacramento and San Joaquin River watersheds

ID
USGS ID# or
CA DWR ID River Gauge name Latitude Longitude

Inlet (I) or
outlet (O)

1 SHA Sacramento River Shasta Dam 40.60 �122.44 I
2 11372000 Clear Creek Whiskeytown Dam transfer 40.52 �122.53 I
3 BLB Stony Creek Black Butte Dam 39.81 �122.33 I
4 ORO Feather River Oroville Dam 39.52 �121.55 I
5 11421000 Yuba River Yuba River—Marysville 39.18 �121.52 I
6 CFW Bear River Camp Far West Dam 39.05 �121.32 I
7 AMF American River Folsom Dam 38.68 �121.18 I
8 11447650 Sacramento River Sacramento River—Freeport 38.45 �121.50 O
9 11303500 San Joaquin River San Joaquin River—Vernalis 37.68 �121.27 O
10 11302000 Stanislaus River Goodwin Dam 37.85 �120.64 I
11 11289650 Tuolumne River La Grange Dam 37.67 �120.44 I
12 11270900 Merced River Merced Falls Dam 37.52 �120.33 I
13 11251000 San Joaquin River Friant Dam 36.98 �119.72 I

Note: The ID value refers the numerical value on Figure 1.
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Merced Falls Dam, the upper Tuolumne River at the La
Grange Dam, and the upper Stanislaus River at the
Goodwin Dam are the inlets for the watershed (Figure 1,
Table I). The watershed is highly agricultural; of the total
cropland in the study area, 38% is covered by fruits and
nuts, 36% by field crops (corn, tomatoes, pumpkins,
watermelon, asparagus, cotton, beans, etc.), 17% by
truck, nursery, and berry crops, and 4% by grain crops
(DWR, 2007).
The San Joaquin Valley has a Mediterranean climate

with hot, dry summers and cool, wet winters. Average
annual rainfall is approximately 20 to 30 cm, with most of
the precipitation falling between November and April.
Average temperatures range from 11 �C in the winter to
25 �C in the summer (NOAA, 2008). Due to the arid
climate, agriculture in the San Joaquin Valley critically
depends on irrigation. Farmers in the San Joaquin Valley
use a combination of groundwater and surface water to
meet irrigation needs.

SWAT model description

The Soil and Water Assessment Tool is a model
designed to simulate watershed processes at a river-basin
scale (Arnold et al., 1998) that has been successfully
applied in many environments (Gassman et al., 2007).
SWAT simulates the entire hydrological cycle, including
surface flow, lateral soil flow, evapotranspiration, infiltra-
tion, deep percolation, and groundwater return flows. For
this study, surface runoff was estimated using the Soil
Conservation Service Curve Number (CN), an empirical
parameter for predicting runoff based on soil properties and
land use (SCS, 1984), and evapotranspiration was
estimated using the Penman–Monteith method (Penman,
1956; Monteith, 1965). Water within the soil column can
be removed by evaporation or plant water uptake, deep
percolation for aquifer recharge, or lateral movement in the
soil column for streamflow contribution. Groundwater
return flow is estimated based on the groundwater balance,
where shallow and deep aquifers can contribute to
streamflow. A temperature index–based approach is used
Copyright © 2012 John Wiley & Sons, Ltd.
to estimate snow accumulation and snowmelt processes.
Irrigation was automatically scheduled and based on a soil
water deficit, where water is added to the soil column when
the soil water is below user-defined percentage of field
capacity. For this study, irrigation occurs only when the
soil water is at 85% of field capacity. Fertilizer was
automatically added to the top layer of the soil based on a
user-defined nitrogen stress threshold, which is a fraction
of potential plant growth. Anytime the actual plant growth
falls below this threshold, the model will automatically
apply fertilizers. The nitrogen stress threshold used in this
study was 0.95. We assume that growers will irrigate and
apply nitrogen to the soil using the same thresholds as the
present-day figures, and thus, the irrigation and nitrogen
stress values remained constant for all simulations. Input
data for SWAT include spatially distributed information
basin topography, soil properties, land use/land cover, and
climate time-series data. The model was run at a monthly
time step. A full description of SWAT can be found in
Neitsch et al. (2005).

SWAT model input data

Compiled from state and government agency databases
were SWAT input parameter values from topography,
land use/land cover, soil, and climate data. Data extracted
from the Environmental Protection Agency include
1:250 000-scale quadrangles of land use/land cover data,
1:24 000-scale digital elevation models, and 1:100 000-
scale stream network data from the National Hydrography
Dataset. Cropland was defined based on the land-use
survey database completed by the California Department
of Water Resources (DWR) during 1996–2004. Cropland
information will be assumed to have remained unchanged
since the date of survey completion. Land use/land cover
remained constant throughout the climate change simula-
tions. Soil properties in the watershed were extracted
from the 1:24 000 Soil Survey Geographic database.
Daily weather data, including precipitation and minimum
and maximum temperatures, were retrieved from the
California Irrigation Management Information System.
Hydrol. Process. (2012)
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Irrigation was automatically simulated by SWAT based
on the soil water deficit. Depending on the subwatershed,
irrigation water was extracted from the nearby reach or a
source outside the watershed. Fertilization was automat-
ically applied based on a plant growth threshold.

Climate change projections

Recent hydrological studies incorporate projections
from GCMs, downscaled to a higher resolution for
California (e.g. Maurer and Duffy, 2005; Maurer, 2007;
Cayan et al., 2008). These studies show general agreement
with temperature increases but great variability in
projected precipitation for California. Consequently, no
GCM should be considered superior to others in predicting
California precipitation, and any projection should there-
fore be regarded as equally plausible. For this study, we
will use the upper limit for IPCC temperature projections of
+6.4 �C and a�20% precipitation change compared to the
present-day climate. These values bracket the range of
plausible climate change scenarios for LHS.

Latin hypercube sampling

The LHS technique is a type of stratified Monte Carlo
simulation first suggested by McKay et al. (1979). It has
been used in a wide array of research topics for sensitivity
and uncertainty analysis (Iman et al., 1981; Helton and
Davis, 2003). The idea of LHS depends on the subdivision
of a sampling space (in this case, temperature and
precipitation) into Ns numbers of non-overlapping seg-
ments with equal probability. LHS then draws a sample
from each segment. Once the segments are defined, each
individual parameter is randomized until a value that lies
within each probability segment is found. Each round of
sampling chooses randomly in a way that every interval
contains one sample. The random numbers for each
parameter are then combined with the random numbers
from other parameters such that all possible combinations
of segments are sampled (Baalousha, 2006). LHS can be
executed based on the following formula:

xij ¼ F�1 pj ið Þ � Uij

Ns

� �
(1)

where pj(i) is the random permutation of 1 to n, where n is
the total number of realizations; F–1 is the inverse
cumulative probability density function; Uij is a U[0,1]
random variable; Ns is the number of segments; j is 1,2,. . .
k, where k is the dimension input of vector X. For this
project, the number of realizations (model runs) and
segments is 2000, and temperature and precipitation are the
parameters being sampled. The sampling range for
temperature and precipitation is +0 to 6.4 �C and �20 to
+20% compared to the present-day climate, respectively. A
sampling of 2000 would subdivide the temperature and
precipitation ranges into 0.003 �C and 0.02%, respectively,
and therefore, the selection of 2000 segments will cover
all potential temperature and precipitation projections.
We assume the relationship between temperature and
Copyright © 2012 John Wiley & Sons, Ltd.
precipitation to be independent. Precipitation and
temperature are negatively correlated, as dry conditions
favour more sunshine and less evaporative cooling,
whereas wet days are cooler than dry days (Trenberth
and Shea, 2005). However, the purpose of this study is to
assess the changes of streamflow and agricultural pollutant
transport using every plausible combination of temperature
and precipitation. Including the relationship between
temperature, precipitation, and relative humidity was
beyond the scope of this study. Additionally, we assume
that all temperature and precipitation pairings are equally
plausible. It is important to note that an assessment of
model sensitivity to climate change does not necessarily
provide a projection of the likely consequences (Ficklin
et al., 2009). However, such studies provide valuable
insights into the sensitivity of hydrological changes to
changes in climate (Arnell and Liv, 2001).

Calculation of the 95CI

After the LHS is performed, the temperature and
precipitation values were input into SWAT to simulate
streamflow and agricultural pollutant transport. In total,
there were 2000 simulations for each scenario, with
varying precipitation and temperature inputs. The 95CI
was calculated from the output of these simulations based
on the algorithm developed by Abbaspour et al. (2007).
This algorithm is normally used for hydrological model
calibration, where the 95CI is calculated from changes in
model parameters on an uncalibrated model. The 95CI
would then give a result of parameter uncertainty, and
subsequent steps would decrease this uncertainty by
narrowing the parameter ranges. For this study,
temperature and precipitation are the only variables
changed and are varied upon a calibrated SWAT model.
Therefore, the 95CI calculated in our study is only from
changes in precipitation and temperature, which we
assume to be a climate change sensitivity assessment.
In the first step, a sensitivity matrix, J, is computed

using

Ji;j ¼ Δgi
Δbj

(2)

where i is the number of rows (equal to all possible
combinations), j is the number of columns (precipitation
and temperature), g is the objective function value [in this
case, the Nash–Sutcliffe coefficient (NS; Nash and
Sutcliffe, 1970)] of the climate change simulation
compared to the present-day climate simulation, and b is
the climate change parameter (temperature or precipitation).
The Hessian matrix, H, is then calculated by following the
Gauss–Newton method:

H ¼ JTJ (3)

Then, based on the Cramer-Rao theorem (Press et al.,
1992), an estimate of the lower bound of the parameter
covariance matrix, C, is calculated from
Hydrol. Process. (2012)
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C ¼ s2g JTJ
� ��1

(4)

where s2g is the variance of the climate change simulations
compared to the present-day climate from the n runs. The
estimated standard deviation and 95CI interval of a
parameter, bj, are calculated from the diagonal elements
of C from

sj ¼
ffiffiffiffiffiffi
Cjj

p
(5)

bj;upper ¼ b�j þ z � sj (6)

bj;lower ¼ b�j � z � sj (7)

where b�j is the parameter b for the solution with no
temperature and precipitation change, and z is the upper
critical value of the t-distribution with n – 1 degrees of
freedom (1999 for this study).

Statistical analyses

Absolute percent change compared to the long-term
average (also termed “upper and lower limit”) was calculated
for each month for all model output. T-tests for dependent
sampleswere performed on streamflow, sediment, and nitrate
scenarios at the 0.05 significance level.
Figure 2. Scatterplots showing the Latin hypercube sampling of the
Sacramento River watershed (A) and the San Joaquin River watershed (B)
RESULTS AND DISCUSSION

SWAT model calibration and validation

The calibration and validation procedures can be found
in Luo et al. (2008) for the San Joaquin River watershed
and Ficklin et al. (2012b) for the Sacramento River
watershed. Both models were previously calibrated and
validated for streamflow, sediment loads, and nitrate loads
measured at USGS gauges located within the Sacramento
and San Joaquin River watersheds. At the Freeport USGS
site for the Sacramento River watershed (Figure 1,
Table I), the NS coefficients for validation were 0.86
for streamflow, 0.64 for sediments, and 0.51 for nitrate
(Ficklin et al., 2012b). Average monthly streamflow,
sediment loads, and nitrate loads during the present-day
simulation were 778m3/s, 165 833 tons/month, and
1 502 220 kg/month, respectively. At the Vernalis USGS
site for the San Joaquin River watershed (Figure 1,
Table I), the NS for the validation period was 0.95 for
streamflow, 0.74 for sediments, and 0.85 for nitrate (Luo
et al., 2008). Average monthly streamflow, sediment
loads, and nitrate loads during the present-day simulation
were 121m3/s, 23 324 tons/month, and 278 735 kg/
month, respectively. Both models provided satisfactory
simulation results in estimating the temporal trend and
variation of streamflow and agricultural pollutant loads,
and therefore, the models were deemed suitable for
evaluating the sensitivity to climate change.

Latin hypercube sampling

Figure 2 displays the results of the Latin hypercube
temperature and precipitation sampling for the 2000
SWAT model runs. As shown from the even scattering of
Copyright © 2012 John Wiley & Sons, Ltd.
data points in Figure 2, the sampling did a satisfactory job
at pairing nearly all possible combinations of precipitation
and temperature. Most importantly, the temperature (+0
and 6.4 �C) and precipitation (�20% and +20%) extremes
were sufficiently sampled (Figure 2).

Hydrological and agricultural pollutant changes

Presented streamflow, sediment load, and nitrate load
results are from the Sacramento River—Freeport and the
San Joaquin River—Vernalis USGS gauging stations and
are considered the outlet for their respective watersheds
(Figure 1, Table I). For both watersheds, the streamflow is
highly controlled by the upstream reservoir releases, and
therefore, any changes in model output compared to
present-day simulations are dependent on hydrological
conditions within the watersheds and not from changes in
reservoir management.

Streamflow. For the Sacramento River watershed stream-
flow, t-tests indicate that the upper and lower 95CI limits
were not significantly different (p< 0.05) from present-
day streamflow rates, which is due to the managed
reservoir releases into the watershed (Figure 3). The
average monthly absolute percent change for the 95CI
upper limit was 3%, whereas the lower limit was 10%
compared to the present-day streamflow (Table II). This
Hydrol. Process. (2012)
DOI: 10.1002/hyp



Figure 3. Streamflow 95% confidence intervals from the climate change
simulations for the Sacramento (top) and San Joaquin River (bottom)
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indicates that long-term streamflow in the Sacramento
River watershed is more likely to decrease with changes
in climate. The change in the 95CI lower limit was greater
than the upper limit for each month, with the smallest
difference occurring during the dry season months of
August through October (Table II). The largest decrease
occurred in December with a 15% change compared to
present-day streamflow, whereas the smallest decrease
occurred during October with a 5% change.
Flood weirs on the Sacramento River muted the change

in the upper limit of 95CI. Six major flood control
structures are located on the Sacramento River. When the
river is above a particular discharge value, water spills
over the weir structures, capturing streamflow that would
have originally remained in the river. The weirs transport
water into wetlands, other streams, or completely out of
the modelled watershed. Therefore, increases in stream-
flow from precipitation increase may be captured by the
flood weirs. These flood weir structures are accounted for
within the SWAT model (Ficklin et al., 2012b). Within
the model, if the streamflow is above a certain discharge
(from Feyrer et al., 2006), the water is routed to the
diversion destination.
For the San Joaquin River watershed streamflow, the

overall mean monthly absolute percent change values for
the 95CI upper and lower limits were 27% and 28%
compared to the present-day climate, respectively (Figure 3,
Table II). T-tests indicate that both 95CI limits were not
significantly different (p< 0.05) from the present-day
streamflow rates, which is, again, due to the managed
reservoir releases into the watershed. There was high
variability within seasons. Generally, the upper limit of the
95CI was greater in January through June compared to the
lower limit. Conversely, the lower limit of the 95CI was
Copyright © 2012 John Wiley & Sons, Ltd. Hydrol. Process. (2012)
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generally greater than the upper limit from July through
December. The largest absolute percent change increase
and decrease were 42% and 39% and occurred in June and
September, respectively (Table II).

Sediment Loads. The average monthly absolute percent
change for the Sacramento River watershed sediment load
was 20% for the upper 95CI limit and 26% for the lower
95CI limit; these were found to be significantly different
from present-day sediment loads (p> 0.05) (Figure 4,
Table II). This indicates that there is a high variability in
sediment loads, with a tendency to decrease under
climatic changes. The monthly sediment load absolute
percent change for the Sacramento River watershed
indicates that there is likely to be an increase for late
winter/early spring and decreases for the rest of the year.
This is potentially caused by the presence of large
precipitation events during late winter/spring. The largest
increase and decrease occurred during March and
September, with an absolute percent change of 43% and
34%, respectively (Table II).
The average monthly absolute percent change for the

San Joaquin River watershed sediment load 95CI upper
limit was 73% and 49% for the lower limit compared to
the present-day simulation, indicating a tendency for an
increase in sediment runoff under climatic change
(Figure 4, Table II). However, the upper and lower
95CIs were not significantly different (p< 0.05) from
the present-day simulations. Sediment load increased for
every month except for September and October
(Table II). The largest increases occurred during the
Figure 4. Sediment load 95% confidence intervals from the climate
change simulations for the Sacramento (top) and San Joaquin River

(bottom) watersheds

Copyright © 2012 John Wiley & Sons, Ltd.
late spring/early summer. The lower 95CI limits
remained consistent for each month, with a standard
deviation of approximately 4.6%. The largest sediment
load increase occurred in June with an absolute percent
change of 165%, and the largest sediment load decrease
occurred in September with a 57% decrease. It is worthy
to note that, although large sediment loads are observed
during the wet season, high loads are also found in the
irrigation season.
For the winter and spring months, large changes in

sediment loads are expected. Sediment is largely
generated by winter and spring precipitation events, and
therefore, any change in those events will have a large
effect on the amount of sediment transported out of the
watershed. For the summer months, sediment movement
is transported by sediment runoff from irrigation applica-
tions and streambed erosion. If the streamflow energy is
low enough, sediment can be deposited within the
streams, resulting in a decrease in sediment loads.
Therefore, the high correlation (r> 0.90) between
changes in sediment loads and streamflow is to be
expected.

Nitrate Loads. The Sacramento River watershed average
monthly absolute percent change in nitrate was 13% for
the 95CI upper limit and 13% for the 95CI lower limit
compared to the present-day simulation (Figure 5,
Table II). T-tests indicate, however, that the 95CI upper
limit was not significantly different (p> 0.05), whereas
the 95CI lower limit was (p< 0.05). The monthly absolute
percent changes showed high variability compared to
Figure 5. Nitrate load 95% confidence intervals from the climate change
simulations for the Sacramento (top) and San Joaquin River (bottom)

watersheds
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present-day nitrate loads, with no consistent increase or
decrease throughout the year. Nitrate loads generally had the
tendency to increase during the late fall and winter months
and to decrease during the summer months. The largest
increase was 32% and occurred in February, whereas the
largest decrease was 21% and occurred in January (Table II).
This result is expected, as an increase or decrease in rainfall
will result in corresponding increases or decreases in nitrate
runoff.
The average monthly absolute percent change for the

San Joaquin River watershed nitrate loads was 28% for
the 95CI upper limit and 26% for the lower limit
(Figure 5). Both 95CI limits were found to be
significantly different (p< 0.05). This suggests a slight
tendency for nitrate to increase with climatic changes.
The largest absolute percent change increase and decrease
were 71% and 42% and occurred in September and
March, respectively (Table II). Table II indicates a strong
seasonal variation in nitrate runoff. During the early
spring and summer, nitrate loads have the tendency to
decrease, whereas in the late summer and winter months,
they have the tendency to increase. This can be attributed
to changes in plant growth. Our previous study (Ficklin
et al., 2009) found that the watershed-wide average leaf
area index with elevated temperature peaked up to two
months relative to the present-day climate. This resulted in
changes in evapotranspiration as well as changes in
agricultural management.
Nitrate load results are associated with dissolved-

phase nitrate only, and thus, all nitrate yield is water
associated. Therefore, nitrate runoff is dependent on the
hydrological balance, the quantities present in the soil
either from natural sources or from fertilizer inputs, and
the degree to which they are removed by plants at the
site (Ferrier et al., 1995). Changes in surface water
runoff appeared to be the most significant factor in
fertilizer runoff changes in a study by Mander et al.
(2000). In our study, changes in nitrate runoff for both
watersheds were moderately correlated (r greater than
0.50, but less than 0.75; p< 0.05) with changes in
streamflow. Annual fertilizer use did not significantly
decrease under climate change. However, it was found
that less fertilizer was applied during the summer
months for both watersheds due to the shift in plant
growth patterns from an increase in air temperature. In
our previous study (Ficklin et al., 2009), we showed that
watershed-wide average leaf area index in the San
Joaquin River watershed shifted ahead one month with a
1.1 �C air temperature increase and three months with a
6.4 �C air temperature increase. A shift in plant growth
results in a shift in fertilizer use, thus reducing the amount
used in the summer months.

Comparison and differences in watershed sensitivities.
Before discussion, it is important to note the differences in
volumes in both watershed outputs. Whereas the San
Joaquin River watershed may have a larger absolute percent
difference (representing sensitivity), the Sacramento River
watershed may have overall larger output caused by the
Copyright © 2012 John Wiley & Sons, Ltd.
difference inwatershed size. Therefore, the watershedsmust
be compared by normalized statistics.
The 2000 Latin hypercube simulations for each

watershed were used for the calculation of the 95CI.
The average width of the 95CI band divided by the
standard deviation of the 95CI bandwidth (termed the
“r-factor” by Abbaspour et al., 2004) is a good indicator
to use for the comparison of watershed sensitivities.
Generally, sensitivity decreases as the r-factor decreases,
indicating a small 95CI width. The streamflow r-factors
for the Sacramento and San Joaquin watersheds were 1.44
and 1.42, indicating that the streamflow within both
watersheds was equally sensitive to climate change
(Figure 3). This is most likely caused by the large effect
of reservoir releases into the watersheds. Based on the
absolute percent change sediment load statistics, the San
Joaquin River watershed is nearly twice as sensitive as the
Sacramento River watershed (Table II). The sediment
load r-factors were 0.59 for the Sacramento River
watershed and 0.68 for the San Joaquin River watershed,
which represents a higher sensitivity for the San Joaquin
River watershed (Figure 4). Compared to the San Joaquin
River watershed, more sediment may be transported out
of the Sacramento River watershed between the months
of January and April whereas less may be transported
during the rest of the year compared to the present-day
climate simulations. For nitrate loads, the absolute percent
change statistics indicate that the San Joaquin River
watershed is more sensitive than the Sacramento River
watershed (Table II). The nitrate load r-factors were 0.69
for the Sacramento River watershed and 1.02 for the San
Joaquin River watershed, indicating a higher sensitivity of
nitrate runoff to climate change for the San Joaquin River
watershed compared to the Sacramento River watershed
(Figure 5).
Climate change sensitivity differences between the two

watersheds can be attributed to two factors: differences in
land use and soil properties. Precipitation was varied by
the same percentage for both watersheds and was
assumed not to be a factor. The differences between land
use and soil properties between the watersheds may seem
nominal but can be large when extrapolated over large
areas. A comparison of the agricultural land acreage from
DWR land-use data indicates that the San Joaquin River
watershed contains approximately twice as much agri-
cultural land than the Sacramento River watershed. The
San Joaquin watershed area is approximately 8500 km2

less than the Sacramento River watershed, leading to a
higher agricultural land density. A difference in agricul-
tural acreage will have large effects on (1) irrigation water
use, (2) evapotranspiration water loss, (3) agricultural
management practices leading to susceptibility of field
erosion, and (4) a higher density of fertilizer use, leading
to increased nitrate runoff susceptibility.
There are several differences in soil properties that may

lead to the differences with climate change sensitivities.
SWAT uses the Modified Universal Soil Loss Equation
(MUSLE; Williams, 1975) to estimate sediment yield
from each subbasin:
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Sed ¼ 11:8 � Qsurf � qpeak � areaHRU
� �0:56 � Kusle

�Cusle � Pusle � LSusle � CFRG (8)

where Sed is the sediment yield on a given day (metric tons),
Qsurf is the surface runoff volume (mmH2O/ha), qpeak is the
peak runoff rate (m3/s), areaHRU is the area of the
Hydrologic Response Unit (ha), Kusle is the USLE soil
erodibility factor [0.013 metric ton m2 h / (m3-metric
ton cm)], Cusle is the USLE cover and management factor,
Pusle is the USLE support practice factor, LSusle is the USLE
topographic factor, and CFRG is the coarse fragment
factor. The slopes of the two watersheds are approximately
equal, and therefore, the LSusle will be equal as well.
Differences in MUSLE soil parameters leading to

differences in sensitivities include Kusle, soil organic
matter, Cusle, Pusle, and CFRG within the first soil layer. A
higher Kusle factor will lead to more surface erosion. The
area-weighted average Kusle value was 0.29 for the
Sacramento River watershed and 0.32 for the San Joaquin
River watershed, indicating that the San Joaquin River
watershed is more susceptible for sediment runoff.
Additionally, a soil with higher organic matter is less
likely to erode than a soil with less organic matter because
of sediment cohesion. The area-weighted average for soil
carbon content was 1.22% of the soil weight for the
Sacramento River watershed and 0.71% of the soil weight
for the San Joaquin River watershed. A higher CFRG
value indicates soils that are more susceptible to sediment
erosion. Area-weighted average CFRG values were 0.5
for the Sacramento River watershed and 0.8 for the San
Joaquin River watershed. Because the San Joaquin River
watershed has nearly twice as much agricultural land as
the Sacramento River watershed, Cusle and Pusle values
are also higher for the San Joaquin River watershed
compared to the Sacramento River watershed.

Implications. The aim of this work is to assess the
sensitivity of the Sacramento and San Joaquin River
watersheds to climate change using an LHS technique on
temperature and precipitation projections. Our sensitivity
approach and assumptions are not without fault. As
previously mentioned, our LHS scheme assumes that
temperature and precipitation are independent. In reality,
this is not the case, as temperature and precipitation are
inversely related. However, the goal of this study is to assess
the sensitivity of the watersheds to changes in temperature
and precipitation by using all possible temperature and
precipitation projections to bracket the potential ranges of
streamflow and agricultural pollutant transport.
Additionally, land-use change is not simulated, and

therefore, we assume all climate change projections on
current land-use scenarios and management practices.
Changes in land use are likely to have significant impact on
streamflow and agricultural pollutant fate and transport.
However, it is not well known how agricultural land use
will change under climate change. The SWAT model used
in this study allows changes in irrigation use and
fertilization based on changes in soil moisture and plant
Copyright © 2012 John Wiley & Sons, Ltd.
growth thresholds. This assumes that growers will change
their agricultural management techniques based on
changes in the soil and crop and is thus a constrained
estimate of the changes in irrigation and fertilization. It is
important to understand that these inputs may change in the
future with changing agricultural management techniques,
which may alleviate or increase water quality concerns in a
changing climate. Moreover, the results from this study do
not include changes in urbanization or agricultural acreage.
Increases in urbanization will result in decreases of
streamflow either by streamflow or groundwater extrac-
tion. An increase in groundwater extraction may decrease
stream–aquifer connectivity, resulting in a streamflow
baseflow decrease. A decrease in streamflow will further
exacerbate the water quality problem, as decreases in
streamflow either by streamflow or groundwater extraction
may result in increases of contaminant concentrations.
Potential future work would include multiple land-use
scenarios coupled with climate change scenarios.
Lastly, streamflow in both watersheds are highly con-

trolled by reservoir releases, and the sensitivity of streamflow
may not represent the natural sensitivity signal. However,
inasmuch as we assume no sediment or nitrate concentrations
in the reservoir releases, sediment and nitrate sensitivities are
adequately assessed. In conclusion, we present a simple
sensitivity assessment of plausible climate change scenarios
using current land-use scenarios and management practices,
which should therefore be treated with caution.
CONCLUSIONS

This study used the SWAT watershed model to simulate
changes in streamflow and agricultural runoff in the
Sacramento and San Joaquin River watersheds using LHS
from a temperature and precipitation range of 0 to 6.4 �C and
�20%, respectively, compared to the present-day climate.
Using 2000 climate change simulations, the 95CI was
calculated for streamflow, sediment loads, and nitrate loads.
The 95CI results indicate that streamflow and sediment in
the Sacramento River watershed are more likely to decrease
under climate changes compared to present-day conditions,
whereas nitrate runoffwas found to increase and decrease by
equal amounts. For the San Joaquin River watershed,
streamflow slightly decreased under climate change,
whereas sediment and nitrate had the tendency to increase
compared to the present-day climate. Comparisons of
watershed sensitivities indicate that the San Joaquin River
watershed is more sensitive to climate change than the
Sacramento River watershed. Streamflow, sediment load,
and nitrate load r-factors were 1.44 and 1.42, 0.59 and 0.68,
and 0.69 and 1.02 for the Sacramento and San Joaquin
River watersheds, respectively. Climate change sensitivity
differences can be attributed to differences in land use and
soil properties. The results generated from this study are
valuable as a tool for guiding water resource managers and
those required to comply with legislation for water quality
guidelines to make appropriate decisions on land manage-
ment and/or measures for environmental protection.
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