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Remote sensing of spider mite damage in California peach orchards
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A B S T R A C T

Remote sensing techniques can decrease pest monitoring costs in orchards. To evaluate the feasibility of

detecting spider mite damage in orchards, we measured visible and near infrared reflectance of 1153

leaves and 392 canopies in 11 peach orchards in California. Pairs of significant wavelengths, identified by

Partial Least Squares regression, were combined into normalized difference indices. These and 9

previously published indices were evaluated for correlation with mite damage.

Eight spectral regions for leaves and two regions for canopies (at blue and red wavelengths) were

significantly correlated with mite damage. These findings were tested by calculating normalized

difference indices from the Red and Blue bands of six multispectral aerial images.

Index values were linearly correlated with mite damage (R2 = 0.47), allowing identification of mite

hotspots in orchards. However, better standardization of aerial imagery and accounting for perturbing

environmental factors will be necessary for making this technique applicable for early mite detection.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Remotely sensed information is increasingly being used in
modern agricultural production systems. While most efforts to
detect crop statuses or processes affecting crops have focused on
field crops (e.g., Idso et al., 1977; Wiegand et al., 1979; Tucker et al.,
1981; Carley et al., 2008), several recent studies have looked into
applications of remote sensing techniques in orchards. Perez-
Priego et al. (2005) and Suarez et al. (2008) used spectral signatures
of olive leaves and canopies for detecting water deficiency, while
Sepulcre-Canto et al. (2007) related spectral information with olive
yield and fruit parameters. In citrus, Ye et al. (2007) related the
electromagnetic reflectance of canopies to yields, whereas Min and
Lee (2005) used remotely sensed vegetation indices to approx-
imate leaf nitrogen content. Other researchers have used remote
sensing to estimate the chlorophyll content of orchard crops
(Zarco-Tejada et al., 2004), the extent of chilling injury on citrus
fruits (Menesatti et al., 2005) or infection of apple leaves with the
fungus Venturia inaequalis (Cooke) Wint., the causal agent of apple
scab (Delalieux et al., 2007).

In California, remote sensing is widely used in field crop
production (Zhang et al., 2002, 2003, 2005; Fitzgerald et al., 2004;
Qin and Zhang, 2005; Wang et al., 2008), but has so far found little
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to no application in tree crops. Due to the large extent of the fruit
and nut production area in the state and the high value of the crops
that are produced, improved monitoring and management
strategies are needed to remain competitive in the increasingly
global market for tree and nut crops. Such innovations are also
necessary to meet presumably rising irrigation water costs and to
manage agricultural pests in the face of tightened pesticide
regulation.

Growers of peaches (Prunus persica L.) in California are currently
facing particular economic strains. Historically, profit margins
have been high for California peach growers, because of the state’s
favorable climate and strong domestic demand for fresh and
canned peaches. In recent years, however, competition by foreign
producers has increased substantially, with the value of imports
from Chile already amounting to a quarter of the value of the
national production (CDFA, 2008; FAO, 2008). This competition has
led to a 9% decrease in the peach production area and a 27% drop in
total production in California between 2004 and 2006 (CDFA,
2008).

Since farm wages cannot realistically be expected to decrease,
technological progress seems the most viable way forward to
increase the competitiveness of peach production in California.
Remote Sensing can be a valuable tool for thoroughly monitoring
orchards at low cost at a spatial resolution that is high enough to
allow site-specific, economically favorable management strate-
gies. Such strategies offer potential to reduce monitoring costs and
enhance resource use efficiency, thus lowering total production
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costs and increasing the profit margins of farming operations. In
peach production, such monitoring could be particularly useful in
controlling and managing web-spinning spider mite damage early
in the season.

While most other pests can be controlled quite effectively with
one combined pesticide application early in the season, spider mite
populations are often promoted by the early season pesticides,
because these diminish the populations of mite predators, which
then lag in numbers behind the proliferating mites. Consequently
mite damage, caused mostly by the Pacific Spider Mite (Tetra-

nychus pacificus McGregor) and the Two-spotted Mite (Tetranychus

urticae Koch) in California peaches, typically occurs in the middle
or towards the end of the growing season, requiring an extra spray,
which according to the standard costs manual for peach
production in California incurs additional costs of about
150 US$ ha�1 (Day et al., 2004).

In addition to being a cost factor, the typically applied and most
effective miticides are classified as ‘dangerous’, and long Pre-
Harvest Intervals (PHI) of up to 21 days have been imposed by the
State of California (Fouche et al., 2000). For the most common
miticide (active ingredient: propargite) used in California, the
Restricted-Entry Interval (REI), during which the orchard can only
be entered with protective clothing, is 21 days, more than ten
times as long as for all other chemicals listed by Fouche et al.
(2000). A miticide application can thus seriously disrupt the work
flow in the orchard. Early detection of mite infestation would be
highly desirable, since it would allow spraying against mites earlier
in the season, allowing a better timing of late-season crop
management and harvest. It would also facilitate more targeted
control of mite hotspots in orchards or the more selective
application of lower risk but more costly alternative miticides
with shorter PHIs and REIs, thereby allowing growers to cut costs
and reduce the orchard area that cannot be entered.

Mite hotspots often occur near the overwintering sites of adult
females in protected places on trees or in litter, trash and weeds on
the orchard floor. After becoming active in spring, mites begin
feeding on weeds or lower parts of the peach trees (Pickel et al.,
2006). They are favored by hot, dry conditions, and as tempera-
tures rise during the spring and summer, they multiply and move
up to the center of the tree, until the entire tree is infested. Dusty
conditions in orchards often accelerate economically consequen-
tial mite damage, since mites are transported onto higher leaves
with dust particles (Pickel et al., 2006). Consequently, mite
infestations often occur first near dusty orchard roads.

Fitzgerald et al. (2004) showed that detection of mite damage in
cotton (Gossypium hirsutum L.) caused by the strawberry spider
mite (Tetranychus turkestani Ugar. & Nik.) using hyperspectral
imagery is technically possible, and Peñuelas et al. (1995) detected
damage caused by European Red Mites (Panonychus ulmi Koch) on
apple trees.

The objective of this study was to test the feasibility of using
remote sensing techniques for the detection of spider mite damage
in peach orchards. To achieve this, we aim to identify suitable
spectral wavelengths, the reflectance at which is correlated to mite
damage on the leaf and on the canopy level. Furthermore, we will
test, whether mite damage can be detected on multispectral aerial
images. Finally, we will discuss the potential and limitations of
applying remote sensing techniques to detect mite damage in
California peach orchards.

2. Materials and methods

2.1. Study sites

This study was conducted in eleven peach orchards in Fresno
and Kings Counties in California (Fig. 1). Three orchards were
located at the University of California’s Kearney Agriculture Center
(KAC). All other orchards were privately managed by four growers.
One of these growers operated two orchards (sites A and B in
Fig. 1), and another grower’s property was split into four
subsections because of different varieties and planting densities
in the orchard. These four orchards (site E in Fig. 1) were managed
organically.

2.2. Sample collection and analysis

2.2.1. Leaf samples

A total of 1132 peach leaves were collected from nine orchards
throughout the growing season of 2007. Leave samples were
collected during calendar weeks 23, 25, 27, 30 and 32 (May 17th to
July 19th). Because of the large number of study sites, not all
orchards could be sampled at all points in time. To ensure
comparability between the sampled leaves, all leaves were picked
at a height of 2.5 m or less and from all regions of the canopy.
Leaves that appeared abnormal, physically damaged or affected by
pests other than mites were excluded from sampling. Only full-
sized mature leaves were selected for further analysis. Care was
also taken to select leaves from all areas of the orchards to make
sure that all variation in environmental, microclimatic and soil
conditions within the orchards was covered by leaf samples. All
leaves were placed in sealed plastic bags and stored on ice until
analysis.

Spectral data was collected under controlled conditions using
an ASD FieldSpec Pro Field Spectroradiometer (Analytical Spectral
Devices Inc., Boulder, CO, USA), which measures spectral reflec-
tance between 350 and 2500 nm. The spectral resolution of this
instrument is 3 nm at wavelengths between 350 and 1000 nm, and
10 nm for longer wavelengths, with spectral sampling intervals of
1.4 and 2 nm, respectively (ASD, 1999). Reflectance is expressed
relative to the reflectance of a standardized white calibration
surface. For measuring the leaf reflectance, a specially designed
plant probe and leaf clip assembly device was attached to the
instrument’s fiber-optic cable to ensure standardized environ-
mental conditions for reflectance measurement.

After calibrating the spectroradiometer according to the
manufacturer’s instructions, all leaf samples were reinspected
for meeting the above requirements for comparability. For
assessing the damage of each leaf, we then selected a region
centering on the middle rib of the leaf. For this circular region with
a diameter of 2.1 cm (area of 3.5 cm2), we assessed the damage as
an estimated percentage of the area that had sustained mite
damage. Damage percentages were assigned in increments of 5
percentage points, except for very minor mite damage, which
received a damage score of 1%. We preferred this damage
assessment method over plant stress-based approaches, such as
chlorophyll fluorescence (Bounfour et al., 2002), since methods
based on damaged leaf surface area have been shown to more
accurately describe the severity of mite damage (Skaloudova et al.,
2006). A visual assessment was preferred over a computer-based
approach (Skaloudova et al., 2006), since it allowed a larger
number of samples to be analyzed and a clearer distinction
between leaf damage caused by feeding spider mites vs. other
plant stressors. Spider mites feeding on peach leaves cause a
distinct mottling of the leaves, which can easily be distinguished
from discolorations due to nutrient and water deficiency and most
other pests and diseases (Pickel et al., 2006). Subsequently, the
leaves were placed in the leaf clip device, and spectral reflectance
patterns were determined as an average of three replicate
measurements. To remove a jump in the spectral datasets at
975 nm, probably caused by spectral overlap between the three
spectrometers included in the spectroradiometer (ASD, 1999), we
used the jump correction algorithm in the software Spectral



Table 1
Criteria used to assign mite ratings at the canopy level during the visual inspection.

Damage class Class name Criteria

0 None No visible mite damage

1 Low An occasional mite on an occasional leaf

2 Low/moderate Mites easier to find, but no colonies, no

webbing, few eggs

3 Moderate Some leaves without mites, other leaves

with small colonies, eggs easy to find but

very little webbing

4 Moderate/high Mites on most leaves, colonies with eggs,

webbing on some leaves

5 High Lots of mites on most leaves, eggs and

webbing abundant

Fig. 1. Location of the sampled orchards in Fresno and Kings Counties, and location of the study area within the state of California (inset). Site KAC is the University of

California’s Kearney Agriculture Center, whereas sites A through E indicate the locations of private orchards. The three organically managed orchards are at site E.

E. Luedeling et al. / International Journal of Applied Earth Observation and Geoinformation 11 (2009) 244–255246
Analysis and Measurement System (SAMS) Version 3.2 (University
of California, Davis, CA, USA).

2.2.2. Canopy samples

In five orchards, a total of 392 tree canopies were sampled
during calendar weeks 28, 30, 31, 32, 33, 35 (July 6th to August
22nd) of 2006. For examining the spectral reflectance of entire
peach canopies, we used the spectroradiometer described above.
Rather than using the leaf clip device to analyze leaves, however,
we held the bare fiber-optic cable of the sensor vertically above
the canopy of the trees at a distance of approximately 1 m. Given
the spectroradiometer’s field of view of 258, each measurement
thus summarized reflectance from a circular area of about
0.15 m2. Reflectance signals were recorded in three replicates
from two different locations in the canopy, resulting in a total of
six measurements per tree. Since mite infestation levels in 2007
were so low that no mite damage gradient was available for
study, data collection was restricted to the growing season of
2006.

As precisely estimating the percentage of a tree canopy that
is affected by mite damage is difficult, mite damage ratings were
assigned based on an estimate of damage severity, correspond-
ing to the ratings suggested by Pickel et al. (2006), which are
based on detailed inspections of the trees. Each tree was given a
damage rating ranging from 0 (no damage) to 5 (severe damage).
The criteria used to assign the damage ratings are listed in
Table 1.
2.2.3. Mite counts

At weekly intervals between 13 June and 6 August 2006, 50
leaves were collected from each commercial orchard analyzed, and
an additional 25 leaves from each block of the experimental
orchard at KAC. All leaves were stored on ice until analysis. Spider
mites and spider mite eggs were counted under the microscope.

2.2.4. Multispectral aerial images

For analyzing the feasibility of detecting mite damage using
aerial imagery, we obtained six multispectral aerial images of one
experimental orchard at Kearney Agriculture Center for the
growing season of 2006 from a commercial image provider
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(AgriData, Inc., Grand Forks, ND, USA). The images consisted of a
Blue band (410–490 nm), a Green band (510–590 nm), a Red band
(610–690 nm) and a Near Infrared band (800–900 nm). Images
were taken at roughly weekly intervals between July 21st and
August 21st, 2006.

2.3. Identification of significant wavelengths

Many processes that affect plant leaves are reflected in the
spectral signature of the leaves. However, the degree, to which
different wavelengths are correlated to such processes, varies
widely, and identifying the most significant wavelengths within
the spectrum requires advanced statistical tools. Because of the
large number of variables contained in a spectral reflectance
profile, which is often larger than the number of observed cases,
and because of the often high collinearity between reflectances at
different spectral wavelengths, ordinary regression methods tend
to overfit prediction models. Several researchers have shown that
Partial Least Squares regression (PLS; Wold, 1995; Wold et al.,
1998) is a powerful tool to identify significant signals in such
datasets (Frank and Friedman, 1993; Ourcival et al., 1999; Kooistra
et al., 2003; Wilson et al., 2004; Min and Lee, 2005; Delalieux et al.,
2007). The PLS algorithm iteratively produces a sequence of
models, which use latent factors consisting of a linear combination
of input variables, to explain the variation in the dependent
variable. In order to determine the number of latent factors, most
PLS implementations contain a cross-validation procedure, which
uses a subset of the total number of cases to create a prediction
model and tests this model against the remaining cases (Frank and
Friedman, 1993). The cross-validation estimates the Prediction
Residual Error Sum of Squares (PRESS) statistic for each number of
latent factors, and selects the model, for which this indicator is
minimized. Since a minimum is not always reached, and the
maximum possible number of latent factors often overfits the
prediction model, an end user decision about the number of latent
factors is often necessary. Once the number of latent factors has
been specified, the PLS procedure creates a coefficient matrix that
can be interpreted as a descriptor of the relative significance of
each wavelength of the spectrum (Min and Lee, 2005). We used the
PLS algorithm implemented in JMP 7 (SAS Institute Inc., Cary, NC,
USA) to correlate the leaf damage percentage to the spectral
reflectance of the peach leaves.

For the canopy data, this regression was calculated based on the
full reflectance spectrum and the damage class numbers. Even
though the class numbers were assigned on an ordinal rather than
a continuous scale, the PLS analysis should nevertheless allow an
estimate of the most influential spectral regions for mite damage
detection. As indicated by cross-validation, we chose four latent
factors to explain the variability in the damage ratings. For the leaf
analysis, the PRESS statistic of the cross-validation did not reach a
Table 2
List of vegetation indices tested in this study.

Index name

Normalized Difference Vegetation Index: NDVI ¼ rNIR�rRed
rNIRþrRed

Transformed Chlorophyll Absorption Ratio Index: TCARI ¼ 3 � ðr700 � r670Þ � 0:
h

Optimized Soil-Adjusted Vegetation Index: OSAVI ¼ ð1þ 0:16Þ � ðr800�r670Þ
r800þr670þ0:16

Structure Insensitive Pigment Index: SIPI ¼ ðr800�r445Þ
r800�r680

Corrected Transformed Vegetation Index: CTVI ¼ ðNDVIþ0:5Þ
absðNDVIþ0:5Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
absðNDVIþ 0:5

p

Modified Absorption in Reflectance Index: MCARI ¼ ðr700 � r670Þ � 0:2 � ðr700 �½

Soil-Adjusted Vegetation Index: SAVI ¼ rNIR�rRed
rNIRþrRedþL � ð1þ LÞ, with L = 1

Photochemical Reflectance Index: PRI ¼ r570�r531
r570þr531

Red Edge Vegetation Stress Index: RVSI ¼ r714þr752
2 � r733
minimum. To generate a dataset that is consistent over all scale
levels analyzed in this study, we also assumed a model with four
latent factors for the leaf data.

2.4. Construction of vegetation indices

For each region of significant wavelengths, we chose one
representative band for the calculation of vegetation indices. For
each of these regions, we selected the band representing the
highest peak or deepest trough of the model parameter curve. To
evaluate whether a region of PLS model parameters was
significant, we followed the recommendation by Wold (1995),
who suggested an absolute value threshold of 0.8. The selected
bands for each significant region were then used to calculate
vegetation indices from all possible permutations of two wave-
lengths among this set. In calculating indices, we followed the
strategy of Hansen and Schjoerring (2003), who calculated
normalized reflectance indices corresponding to the pattern of
the Normalized Difference Vegetation Index (NDVI; Tucker, 1979)
as RI y � x = (r(ly) � r(lx))/(r(ly) + r(lx)), in which r(lx) and r(ly)
are the reflectances at wavelengths x and y, respectively.
Whenever more than half of the calculated index values were
negative, lx and ly were exchanged in the above equation to obtain
positive values. This procedure was done separately for the leaf and
canopy data.

The predictive capability of all such indices was tested by
calculating linear regressions between each index and the damage
percentage for all 1153 leaf samples and 392 canopy samples,
respectively. Since most of these linear regressions yielded highly
significant fits, goodness of fit was judged by interpreting the F

value of the regression.

2.5. Comparison of results with existing vegetation indices

To examine the usefulness of the derived indices, the results
were compared with the predictive capability of 9 previously
published indices: the Normalized Difference Vegetation Index
(NDVI; Rouse et al., 1974; Tucker, 1979), the Transformed
Chlorophyll Absorption Ratio Index (TCARI; Haboudane et al.,
2002), the Optimized Soil-Adjusted Vegetation Index (OSAVI;
Haboudane et al., 2002), the Structure Insensitive Pigment Index
(SIPI; Zarco-Tejada et al., 2005), the Corrected Transformed
Vegetation Index (CTVI; Perry and Lautenschlager, 1984), the
Modified Absorption in Reflectance Index (MCARI; Daughtry et al.,
2000), the Soil-Adjusted Vegetation Index (SAVI; Huete, 1988), the
Photochemical Reflectance Index (PRI; Gamon et al., 1992) and the
Red Edge Vegetation Stress Index (RVSI; Perry and Davenport,
2007) (Table 2).

For all indices that required a definition of the red and near
infrared part of the spectrum, we followed Tucker (1979), defining
Reference

Rouse et al. (1974); Tucker (1979)

2 � ðr700 � r550Þ � r700
r670

� �i
Haboudane et al. (2002)

Haboudane et al. (2002)

Zarco-Tejada et al. (2005)
ffiffiffiffi
Þ Perry and Lautenschlager (1984)

r550Þ� � r700
r670

� �
Daughtry et al. (2000)

Huete (1988)

Gamon et al. (1992)

Perry and Davenport (2007)



Fig. 2. Mean numbers of spider mites and spider mite eggs per leaf in pesticide-

treated vs. untreated orchard blocks at Kearney Agriculture Center (KAC) over the

2006 sampling season.

Fig. 3. Mean numbers of spider mites (a) and spider mite eggs (b) per leaf in three

commercial peach orchards over the 2006 sampling season. Note the axis breaks in

both plots, which were necessary to display the high early July concentrations in

Orchard A.

E. Luedeling et al. / International Journal of Applied Earth Observation and Geoinformation 11 (2009) 244–255248
red as radiation between 630 and 690 nm and near infrared as
between 750 and 800 nm. As described above for the indices
derived from the PLS regression, we calculated linear regressions
between each of the previously published indices and the mite
damage ratings and evaluated the goodness of the mite detection
procedure by interpreting the F values.

2.6. Influence of site and season on index values

For quantifying the effects of site and season on index values,
reflectance index values for leaves and canopies were analyzed
using the Kruskal–Wallis test (Sokal and Rohlf, 1995), with
orchard and calendar week as independent variables. To
determine the impact of these effects on mite detection at
the leaf level, we conducted separate analyses for healthy leaves
and for damaged leaves that had more than 50% of the leaf area
affected by mite damage. We restricted this analysis to the 10
indices that had the highest F values of the linear regression
with mite damage. On the canopy level, we compared values of
all 10 indices of healthy or mildly mite-affected canopies
(damage classes 0 and 1) with index values of highly affected
canopies (damage classes 4 and 5). To decide whether correction
for site and date effects was necessary, we compared the
distributions of index means of all orchard/date combinations
for healthy and damaged leaves and canopies. If these
distributions overlapped, reliable distinction of healthy leaves
from one date or orchard from damaged leaves from another
date or orchard was not possible in all cases, indicating a need
for site- and date-specific correction. Since the scales of the
various indices were widely different, we normalized all indices
by subtracting the minimum index value and dividing by the
range of index values for visualization and interpretation
purposes. This transformation projected all indices onto a scale
ranging from 0 to 1.

2.7. Transfer of canopy results to aerial images

To apply the results from the canopy analysis on the orchard
level, we calculated reflectance indices from the Blue, Red and Near
Infrared bands of the aerial images. The coarse spectral resolution
of the aerial images unfortunately did not allow full application of
the more detailed results obtained at the leaf and canopy levels.
Red and Near Infrared were combined to calculate the NDVI,
whereas the Red and Blue bands were used to calculate a NDVI-like
Red–Blue index:

Red�Blue index ¼ rRed � rBlue

rRed þ rBlue

Unlike the NDVI, which reliably distinguishes vegetation in an
image from non-vegetated areas, the Red–Blue index does not
necessarily identify vegetation. To ensure that the analysis was
restricted to the orchard trees, we calculated the NDVI, classified
the images into two classes by using an equal-interval classifica-
tion and interpreted the brighter of these classes as vegetated. All
further analysis was then restricted to the vegetated area.

To remove some of the noise and provide more easily
interpretable results, Red–Blue index images were then subjected
to post-processing. To remove effects stemming from local
variations in canopy density, we applied focal statistics on
rectangular areas of 3 � 3 pixels, replacing each value by the
maximum Red–Blue value encountered in the neighborhood of the
pixel. The same function was then used to replace each pixel by the
mean of a neighborhood area of 11 � 11 pixels. Since the resolution
of the aerial images was 0.5 m, pixel values thus incorporated
spectral information from a square area of 5.5 m � 5.5 m, being a
good approximation of the size of a peach canopy.
The assignment of Red–Blue index values to the aerial images
was investigated for images taken at Kearney Agriculture Center on
July 21st and 29th and August 04th, 10th and 21st. Around the time
of image capture, spider mite damage was assessed visually in the
field by assigning damage classes, as described above for the
canopy dataset. The size of the canopy of each tree was then
digitized and the mean Red–Blue index calculated for the area of
each sampled tree canopy. On average, each of the 75 trees used for
verification was sampled 3.5 times during the season, resulting in a
total of 265 pairs of damage ratings and index values for the
verification dataset. To ensure that observable spatial difference in
mite infestation levels occurred during the experiment, the
orchard was split into eight blocks, four of which were sprayed
with a broadband pesticide on June 14th, 2006 (see block
delineations in Fig. 9). Since this application affects the natural
predators of spider mites more strongly than the mites themselves,
we expected more severe mite damage in the treated sections of
the orchard.

Aerial imagery was only available as raw data, and radiometric
calibration or atmospheric correction was impossible due to
limited knowledge about the equipment used by the commercial
provider and atmospheric conditions at the time of image capture.
To still allow some comparison between images taken at different
times during the season, we removed the linear bias of the
calculated NDVI values by subtracting the minimum index value of
each image from each pixel of the image. Linear regressions were
then calculated between the corrected and uncorrected index
values and the damage classes to test the accuracy of the
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classification. All spatial analyses were conducted using ArcGIS 9.2
(ESRI Inc., Redlands, CA, USA).

3. Results

3.1. Mite counts

Numbers of spider mites and spider mite eggs varied
substantially between orchards and over time (Figs. 2 and 3). In
the KAC orchards, application of broad-spectrum pesticides early
in the season led to higher incidence of mites later (Fig. 2). Among
the commercial orchards, orchard A temporarily had very high
concentrations of web-spinning spider mites and eggs, but a
miticide application in early July controlled mites effectively
(Fig. 3). Orchard C had very low mite concentrations throughout
the season. At Orchard D, mite and mite egg concentrations
increased gradually, but did not reach levels at which the grower
found it necessary to intervene.
Fig. 4. Spectral reflectance profiles of all healthy and all heavily mite-affected peach leave

classes 0–1 and 4–5 for the canopies). The gray areas around the curves indicate � one

Fig. 5. Model coefficients of the Partial Least Squares (PLS) regression between reflectance

data measured at the leaf (left graph) and canopy (right graph) level. The bold horizo

wavelengths were considered significant.
3.2. Spectral signatures of peach leaves and canopies

While reflectance of healthy peach leaves was relatively low in
the visible parts of the spectrum, with a peak in the green region,
reflectance of near-infrared radiation was high, dropping off
towards longer wavelengths (Fig. 4). Regions of low reflectance
were found around the water absorption bands at 1450, 1900 and
2500 nm (Kou et al., 1993). The reflectance patterns of leaves that
were heavily affected by mite damage were generally similar, but
had higher reflectance in the visible region, lower reflectance in the
nearest infrared, and higher reflectance around the water bands
(Fig. 4).

For the tree canopies, reflectance was generally lower than for
leaves at all except the water bands (Fig. 4), probably caused by the
use of the bare fiber-optic cable of the sensor that did not have an
artificial light source (ASD, 1999). Differences between healthy and
mite-affected canopies persisted in the visible part of the
spectrum. For near infrared radiation, the difference between
s and canopies (0% and 90% of the leaf area damaged for the leaf dataset, and damage

standard error of the mean.

at all spectral wavelengths analyzed and the numeric mite damage classification for

ntal lines in both graphs indicate the thresholds at 0.8/�0.8, above/below which
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healthy and damaged leaves had the opposite sign of the
differences detected on the leaf level, with healthy leaves ranging
lower in reflectance than mite-affected leaves in the nearest
infrared and higher at wavelengths between 1450 and 2500 nm
(Fig. 4).

3.3. Significant wavelengths and reflectance indices for mite damage

detection

The Partial Least Squares regression indicated that eight parts
of the reflectance spectrum were significantly correlated with
mite damage on the leaf level (Fig. 5). One significant region was
in the blue and near ultraviolet part of the spectrum (with its
highest absolute PLS model coefficient at 365 nm), one each
occurred in the green (497 nm) and red (687 nm) regions, and
another one was located at the top of the red edge (744 nm), in
the nearest infrared. Three additional significant regions were
located near the water absorption bands (1405, 1888 and
2500 nm). The abrupt peak at 1761 nm appears to be a
measurement artifact, probably arising from spectral overlap
between two of the three spectrometers contained in the
spectroradiometer (ASD, 1999).
Fig. 6. F values of the linear regression between reflectance index values and mite

damage rating for all indices investigated on the leaf (left and bottom axes) and

canopy (right and top axes) level. White bars indicate previously published indices.
Only two significant regions were detected in the analysis of
canopy level reflectance data (Fig. 5). These regions lay in the blue
and near ultraviolet part of the spectrum (390 nm) and in the red
region (651 nm).

Combining all possible pairs of two central bands of significant
spectral regions into normalized difference reflectance indices
resulted in a total of 28 indices for the leaf dataset and only one
index for the canopy dataset. Adding the 9 previously published
indices that were used to evaluate the usefulness of the newly
derived indices (Table 2), this yielded a total of 37 indices on the
leaf and 10 indices on the canopy level (Fig. 6). Values of the F

statistic of linear regressions of these indices with mite damage
varied widely, ranging from 0 to 847 for the leaf dataset and from 0
to 220 for the canopy dataset. On the leaf level, the most successful
index was RI 687–744, followed by the CTVI, NDVI, RI 497–744 and
OSAVI (Fig. 6). All of these indices exploit the difference between
reflectances of red and near infrared radiation. On the canopy level,
index RI 390–651 was most closely correlated with mite damage,
followed by the PRI and, at a far lower F value, MCARI (Fig. 6). In
contrast to the leaf level, all of these indices operate exclusively in
the visible part of the spectrum. Indices that included infrared
radiation did poorly on the canopy level, with F values of the linear
correlation with mite damage ranging between 0 and 22,
compared to 21, 49, 192 and 220 for the indices that solely relied
on visible signals.
Fig. 7. Distributions of mean index values of all orchard/date combinations, for

which leaf and canopy reflectance patterns were measured for healthy and heavily

mite-affected peach leaves and canopies. All index values were linearly normalized

to fit on a 0–1 scale, with 0 being the minimum and 1 the maximum index value. For

leaves, mite-affected leaves had 50% or more of their area affected by mite damage,

whereas healthy leaves showed no signs of damage. For canopies, damage ratings of

0 or 1 were considered healthy, whereas ratings above 3 were considered highly

affected. In box plots, the center line is the median of the distribution, the edges of

the boxes are the 25% and 75% quantiles, and the error bars indicate the 10% and 90%

quantiles.



Fig. 8. Histograms of the Red–Blue index distribution among all pixels of aerial

images of an experimental peach orchard at Kearney Agriculture Center taken on six

different dates during the growing season of 2006.
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3.4. Influence of site and season on index values

Sampling site and sampling date effects were substantial on
both the leaf and the canopy level for all indices. The Kruskal–
Wallis test indicated that all effects of date and site on all indices
were significant (p < 0.05). On the leaf level, however, the
distributions of site/date-specific mean index values for healthy
and damaged leaves showed no significant overlap for the ten most
promising indices. This indicates that on the leaf level mite damage
prediction based on these indices might be possible without
correction for site or date effects (Fig. 7). On the canopy level, only
one index (RI 390–651) showed potential for distinguishing
between healthy and mite-affected trees without site- or date-
specific correction, but achieved a less clear distinction than the
analyses on the leaf level (Fig. 7).

3.5. Aerial images

Among the six aerial images analyzed, overall light intensity and
shape of the value distribution histogram varied substantially for all
color bands. Consequently, the value distribution of the NDVI and
Red–Blue index, which were calculated from the Red, Blue and Near
Infrared bands also showed a strong variation (Fig. 8). This variation
was probably caused by the use of raw imagery. Removing the linear
component of this bias by subtracting the minimum index value
from each image projected the index values roughly onto the same
scale between 0 and 0.16. After this adjustment, the index values
were comparable and seemed useful for mapping spatial variation of
mite damage within the orchard (Fig. 9). According to the visual
impression created by a standard deviation based rendering of
Adjusted Red–Blue index values, mite damage started on July 21st at
the western, southern and eastern edge of the orchard and quickly
spread to cover much of the eastern half of the field, including
treatment block 7 (second from the south on the eastern side of the
orchard in Fig. 9), which had not been sprayed with insecticide. In the
western half of the orchard, the different mite damage levels created
by the pesticide application were clearly visible. Until August 12th,
the area affected by mite damage shifted slightly without strong
changes in the general spatial pattern. For the image taken on August
16th, the distribution of the NDVI values differed from all other
images, causing large parts of the image to be classified as non-
vegetated. For this image, the image distortion caused by the use of
raw image data was too large to be corrected by subtracting the
minimum index value. Nevertheless, the mite damage distribution
within the orchard did not seem overly affected, with the spatial
pattern of the previous dates mostly preserved. By August 21st, areas
affected by mite damage were mostly located in the southern part of
the orchard, as well as on the western edge (Fig. 9).

Correlating the canopy mean of unadjusted Red–Blue index for
the verification trees with the damage ratings assigned to these
trees showed no significant correlation (Fig. 10), indicating that the
spectral variation between images (Fig. 8) obscured any mite
damage signals. After adjusting the index values of each image for
the linear offset, however, the correlation improved, raising the
coefficient of determination from 0.04 to 0.47. Since none of the
verification trees was entirely unaffected by mites throughout
the whole season, the verification only comprised damage classes 1
through 5. Even after adjusting the index values for the image-
specific bias, substantial scatter remained in the dataset (Fig. 10).

4. Discussion

4.1. Spectral signature of mite damage

On the leaf level, mite damage was clearly reflected in the
reflectance profiles, with significant differences appearing in
various regions of the visible and near infrared regions of the
electromagnetic spectrum. The model coefficients of the PLS
regression indicated that the visible regions more strongly
reflected mite damage than the longer wavelengths. When scaling
up to the canopy level, however, all but two of these eight
significant regions disappeared. Mite damage detection conse-
quently seems easiest on the leaf level, indicating a higher
potential for the development of ground-based spectral sensors
than for aerial detection. Such ground-based sensors could be
mounted on orchard equipment, such as fertilizer distributors or
pesticide sprayers to provide spatially contiguous information on
mite damage in orchards. This information could then be used to
determine whether and where chemical treatment is necessary.
When moving to the canopy scale, the spectral signal of mite
damage was noticeably diluted by dust and water vapor in the air
and by diffuse radiation from the surrounding area. In areas of
dense vegetation, such as the peach orchards analyzed in this
study, diffuse radiation should be particularly strong at near
infrared wavelengths, simply because these wavelengths are
almost completely reflected by vegetation. In analyses on the leaf
level, diffuse radiation was kept to a minimum by shielding the



Fig. 9. Spatial distribution of Adjusted Red–Blue index values in the experimental peach orchard at Kearney Agriculture Center on six dates during the growing season of 2006.

Index values are rendered using a standard deviation based algorithm. Note the different index maximum values for each date. The blocks in each image indicate sections of

the orchard that were treated (T) or not treated (untreated – U) with broad-spectrum pesticides early in the season.
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spectrometer’s sensor from outside radiation, thus enabling the
device to pick up the signals of decreased photosynthetic activity,
water deficit and stress caused by mite damage (Reddall et al.,
2004). Since the near infrared wavelengths that are mainly affected
by these processes are not useful for analyses on the canopy level,
the only effect of mite damage that can reliably be picked up at this
level appears to be a change in leaf color. The shift from dark green
to yellowish or even reddish tones that is typically caused by spider
mites is reflected in the visible part of the spectrum, the reflectance
readings of which are much less affected by diffuse radiation than
those at longer wavelengths. This indicates potential of using
sensors based on greenness indices, which are already commer-
cially available.

4.2. Usefulness of reflectance indices for detecting mite damage

At the leaf level, the majority of reflectance indices analyzed
was significantly correlated with mite damage and even
promising to some degree for developing a mite detection
algorithm. The reason for this is probably that mite damage
affects peach leaves on a very fundamental level, with
implications for the leaves’ water balance, photosynthetic
activity, chlorophyll content and level of physiological stress
(Reddall et al., 2004). All of these states and processes have
characteristic signatures, which can be detected by spectral
analysis. All indices based on the difference between visible
reflectance and reflectance at the water absorbing bands, such as
RI 687–1405, RI 365–1888 or RI 497–2500, mirror the water
deficit of the leaves, indices based on differences between red
and near infrared radiation indicate photosynthetic capacity
(Sellers, 1985; CTVI, NDVI, OSAVI), and indices at the red edge
reflect plant stress (RI 687–744). All of these indices require near
infrared reflectance, which is often used for detecting vegetation
but appears less useful for identifying subtle differences in the
reflectance of larger areas of intense vegetation. The diffuse
radiation at these wavelengths appears to cover up most signals
created by plant physiological processes. Consequently, both
indices that showed potential for detecting mite damage on the
canopy scale (RI 390–651 and PRI) were in the visible parts of
the spectrum, reflecting discolorations that can be detected with
the naked eye. Both indices reflect the color shift from the blue
and green appearance of healthy leaves to the reddish yellow
tones caused by mite damage. These results correspond to the
findings of Peñuelas et al. (1995), who found the highest
potential for detecting damage by European Red Mites for
indices operating at visible wavelengths.



Fig. 10. Correlation of mite damage ratings of sample trees with unadjusted and

adjusted Red–Blue index values. Damage ratings were based on visual appraisal of

tree state, and all index values were averaged over the area covered by the tree

canopy.
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4.3. Aerial images

Since aerial images are not commonly available at the high
spectral resolution of the field spectrometer, the range of
wavelengths that can be exploited for mite damage detection is
further decreased by moving to the aerial level. Fortunately, the
canopy analyses indicated that mite damage affects fairly large
regions in the red and blue parts of the electromagnetic spectrum
(Fig. 5), which are covered by the aerial images. A Red–Blue index
thus appeared promising for detecting mite damage in the sample
orchard. When scaling up to the aerial image level, however, several
confounding factors were introduced in addition to the loss of
spectral resolution. Water vapor, dust and diffuse radiation, while
already a problem at the canopy scale, can become serious
impediments to accurate analysis of electromagnetic spectra based
on aerial images. In addition to that, images taken from the air
normally cover large areas, with often considerable distortion of
some or all wavebands at increasing distances from the plane’s
nadir. The extent, to which such effects impact spectral analysis,
depends on the kind of equipment used and the amount and quality
of post-processing done on the images. For images that are obtained
from commercial providers, these factors are often unknown or
beyond the orchard manager’s control. The success of any remote
sensing applications in fruit orchards will depend on how well these
factors can be accounted for or eliminated. The absence of remote
sensing use from orchards, in spite of a growing body of literature
indicating potential for use in fruit production, indicates that more
efforts need to be undertaken to standardize aerial imagery and to
eliminate some of the distorting factors. In our analysis, the biggest
constraint to image usefulness was the considerable variation in the
spectral patterns throughout the season caused by the use of raw
imagery (Fig. 8). While we were able to correct for some of this
variation by removing the linear bias, the uncertainty about the
effects of this correction on the maximum index values made us stop
short of defining a scale for absolute mite damage levels. The rise and
fall of maximum index values throughout the season (Fig. 9) was at
odds with our observation of a gradual rise in mite infestation,
indicating the need for further adjustment of the spectral reflectance
profiles. The development of an absolute mite damage scale would
therefore require a much larger set of orchards, more extensive
ground observations of damage levels, and a more thorough
approach to spectral correction. We assume that these difficulties
stem from the relative complexity of orchard ecosystems compared
to annual field crops, in which remote sensing has been very
successful. While in annual crops most of the variation between the
spectral profiles of healthy plants at different sites can be explained
by differences in soil type, season and a limited range of possible
management options, the reflectance of orchard trees is likely
influenced by a host of additional factors, such as Leaf Area Index, age
of the trees, planting density, pruning regime, variety or intensity
and type of understory vegetation.

Nevertheless, detecting relative mite damage levels within an
orchard was clearly possible. The elevated levels of mite incidence
that were caused by insecticide application to some of the blocks in
the field was visible on the aerial images, even though the effect of
the treatment was smaller than expected, probably because of the
relatively small size of the experimental blocks. More importantly,
the progression of mite damage was visible in the image time
series. As would be expected based on the University of California’s
pest management guidelines (Pickel et al., 2006), mite damage first
occurred near the edges of the orchard, where dusty conditions,
promoted by an adjacent dirt road, probably facilitated initial mite
dispersal. In spreading towards the orchard’s interior, it remained
relatively low in the blocks where no pesticides had been sprayed,
indicating that mites in these areas were controlled relatively
effectively by their natural enemies (Pickel et al., 2006). Overall the
correspondence of Adjusted Red–Blue index values with the levels
of mite damage observed on the sampled trees (Fig. 10) confirmed
the usefulness of this index.

4.4. Feasibility of using remote sensing for mite damage detection

Our study clearly showed that mite damage on peach leaves
evokes a spectral response that can be observed on the leaf as well
as on the canopy level. While more work needs to be done on
transferring these findings to the scale of aerial images, our
analysis also indicated that using remote sensing for mite damage
detection could be technically feasible on that level. The potential
of remote sensing in orchards seemed greater at visible wave-
lengths than in the near infrared. This contradicted the findings of
Delalieux et al. (2007), who concluded that near infrared radiation
had greater potential for detecting apple scab based on a study that
focused only on the leaf level. Nevertheless, in the absence of a
reliable scale and with the variability inherent in many commer-
cially available aerial images, early detection of mite outbreaks
seems difficult. Another constraint to aerial detection of mite
outbreaks is the typical spreading pattern of mites on individual
peach trees. In most cases, mites start colonizing a tree from the
bottom, initially affecting the part of the canopy that is least likely
to be visible on aerial images. By the time mite damage has become
severe enough to result in a clear spectral signal that is detectable
by a camera mounted on an airplane, trees are likely to already be
severely affected. More calibration and verification efforts have to
be invested in this technology, before a final decision about its
potential for early mite detection can be made. In particular, the
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effects of other factors and processes that affect leaf color, such as
water or nutrient deficiencies, needs to be elucidated.

Currently, the Red–Blue index is useful for detecting patterns in
mite damage, which can be used for identifying hotspots of mite
damage and for targeting pest control measures. It remains
doubtful, whether this application alone can make the use of
remote sensing economically feasible for California peach growers.
We are confident that this technology holds potential for the high-
value stonefruit industry of California, if early detection of mites
and/or other important orchard pests becomes possible, or if pest
monitoring applications can be coupled with other uses of remote
sensing. The high correlation of leaf level readings with mite
damage makes it likely that ground-based sensors will achieve
better damage detection results than aerial sensors.

5. Conclusions

Mite damage on peaches clearly elicits a response in the spectral
reflectance patterns of both leaves and entire canopies. While the
leaf analysis showed that many wavelengths of the near infrared
spectrum carry information on mite damage, these signals were not
significant on the canopy scale, due to absorption by dust and water
vapor and signal dilution by diffuse radiation. Only the signal caused
by discoloration was preserved on the canopy scale, and could also
be picked up in the analysis of aerial photographs, allowing spatially
explicit mapping of relative mite damage in the orchard. Before this
methodology can be transferred into practical orchard management,
an absolute scale must be determined, on which mite damage can
reliably be estimated. If such a scale can be found, remote sensing
could become a useful tool for early detection of mite outbreaks in
peach orchards. For making use of the high correlation of leaf-level
indices with mite damage, the suitability of ground-based sensors
for early detection of spider mite damage should be evaluated.
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