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Abstract The present study examines the spatial depen-

dency of soil organic matter and nutrients in paddy fields at

three different scales using geostatistics and geographic

information system techniques (GIS). The spatial vari-

ability of soil organic matter (SOM), total nitrogen (TN)

and available phosphorus (AP) has been characterized

using a total of 460, 131 and 64 samples that were,

respectively, collected from the Hangzhou–Jiaxing–Huz-

hou (HJH) Plain (10 km), Pinghu county (1,000 m) and a

test plot area (100 m) within the Pinghu county, Zhejiang

province of the southeast China. Semivariograms showed

that the SOM and TN had moderate spatial dependency on

the large scale of HJH plain and moderate scale of Pinghu

county with long spatial correlation distances. At the

moderate scale of Pinghu county and the small scale of a

test plot area, the AP data did not show any spatial cor-

relation, but had moderate spatial dependency in HJH

plain. Spherical and exponential variogram models were

best fitted to all these soil properties. Maps of SOM and TN

were generated through interpolation of measured values

by ordinary kriging, and AP by lognormal kriging. This

study suggests that precision management of SOM and TN

is feasible at all scales, and precision management of AP is

feasible at large scales.

Keywords Geostatistics � Semivariogram �
SOM and nutrients � Spatial variability

Introduction

Soil nutrient level is an important indicator for soil fertility

and health (General Soil Survey Office 1998). Studies have

showed that there are different degrees of spatial variability

in soil nutrient level. The characterization of the spatial

variability of soil nutrients is essential to better understand

the relations between soil properties and environmental

factors. Spatial variability of soil nutrients has certain

patterns (such as patchy distribution) or self-similarity.

These patterns can be characterized by spatial dependency

models in geostatistics. The models of spatial dependency

between soil data can also be used to estimate attributes at

unsampled locations. Paddy fields are widely distributed in

the southeast region of China. In particular, the way paddy

fields are cultivated and the growth characteristics of rice

differ from that of other soils. The soil organic matter

(SOM) content, total nitrogen (TN) and available phos-

phorus (AP) in Hangzhou–Jiaxing–Huzhou (HJH) water-

net plain, one of the most developed regions in agriculture

in Zhejiang province is directly connected with the crop

yield and agricultural non-point source pollution (Lu et al.

2005) of the whole area. Understanding the spatial distri-

bution of soil nutrients is necessary for increasing the

efficient use of applied fertilizers and decreasing the water

pollution caused by the downward movement of unused

fertilizer. Geostatistics and Geographic Information Sys-

tem (GIS) are essential tools to analyze georeferenced
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information and enhance our understanding of spatial

variability at various scales.

There have been growing interests in the study of spatial

variation of soil properties using geostatistics since 1970s,

as geostatistics techniques were well developed and suc-

cessful in characterizing the spatial variations of soil

properties. While many studies have been carried out at a

small-scale (Webster et al. 1984; Cahn et al. 1994; Solie

et al. 1999; Wilcke 2000), relatively few have been done at

large-scale (Chien et al. 1997; White et al. 1997; Guo et al.

2000; Liu et al. 2004). Few studies have explicitly inves-

tigated the spatial variability of soil chemical properties in

paddy field (Yanai et al. 2000, 2001). Proper agricultural

and environmental management for paddy fields in South

China depends greatly on the correct delineation of soil

nutrients at various scales, which have not been studied

well.

The primary objectives of this research were (1) to

determine the structure of spatial dependency of SOM and

nutrients at three different scales; and (2) to map the spatial

distribution of the SOM and nutrients.

Materials and methods

Study area

The research was performed in three different areas of

various spatial scales. The large-scale (1:250,000) area lies

within the HJH Plain, Pinghu county. The medium-scale

(1:50,000) area covers only the Pinghu county, whereas the

small-scale (1:2,000) area is located within a test plot area

within the northern part of Pinghu county (Fig. 1).

HJH Plain (1:250,000)

HJH water-net plain is located in the north of Zhejiang

province, in the southeast part of China. It is situated at

the south of the Taihu Lake. This region includes Jiaxing

city, Jiashan county, Tongxiang county, Haining county,

Haiyan county, Pinghu county, Huzhou city, Deqing

county, Anji county, Changxing county and most part of

Hangzhou city and part of Lin’an county. As typical

characteristics of the regions of the South Yangtze River,

numerous drainage ditches form a closely spaced water-

way network in this HJH plain. HJH plain covers an area

of approximately 6,390.8 km2, and it is the major agri-

cultural area that provides the primary food supplies of

the Zhejiang province. Moreover, it is also one of the

most developed areas, as to rural economy, in Zhejiang

Province. Soils are mainly paddy soils, which are special

hydragric anthrosols formed by long-term anthrostagnic

soil formation.

Pinghu county (1:50,000)

Pinghu county is in the eastern HJH plain, the northeast

of Zhejiang province. It borders with the Hangzhou gulf,

a part of the East China Sea. In the southeast there is a

coastal alluvial plain, with an altitude of 2.6–3.6 m

above sea level. The northwest part is an alluvial-lacus-

trine plain with an altitude of 2.2–2.6 m above sea level

(Liu et al. 2003). Pinghu county has a smooth landform

with a slight slope to the north. Pinghu county covers

541.59 km2, of which 71.2% is arable land. Rice (Oryza

satiya) is the dominant crop in the area. In Pinghu, the

soil is mostly paddy soil except for a small quantity of

coastal saline soil with light texture, fluvio-aquic soil and

yellow-red soil that are distributed in the southeast part

of the county.

Test plot area (1:2,000)

The small-scale test plot area is located in the Xindai vil-

lage, in the northern Pinghu county, covering an area of

400 m2. This is a part of agricultural cropland. The plot

was sown with rice and the soil is paddy soil.

Data sampling and analysis

Soil samples were taken from 460, 131, 64 locations within

HJH plain, Pinghu county and the test plot area, respec-

tively, in April 2002 based on consideration of the uni-

formity of soil sample distribution and soil types in the

area. The locations of soil sampling points are presented in

Fig. 2. All soil samples were taken within a depth range of

Fig. 1 Sketch map of the study areas
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0–20 cm after removing stones and large plant root or

debris by air-drying. Subsequently, each sample was

thoroughly mixed and pulverized to pass through a 2-mm

sieve, and stored in a plastic bag prior to the analysis of

SOM, TN and AP. The SOM was determined by the

potassium dichromate wet combustion procedure. The TN

was measured by Kjeldahl method (Agricultural Chemistry

Committee of China 1983). Soil AP (Olsen-P) was ex-

tracted using 0.5 mol l–1 NaHCO3 (pH 8.5) and P con-

centration in the extract was determined using the

molybdenum-blue method (Agricultural Chemistry Com-

mittee of China 1983).

Geostatistical analysis

The main application of geostatistics in soil science has

been the estimation and mapping of soil attributes in

unsampled areas (Goovaerts 1999). Kriging is a linear

geostatistical interpolation technique that provides a best

linear unbiased estimator for quantities that vary in space.

Kriging estimates are calculated as weighted sums of the

adjacent sampled concentrations. If data appear to be

highly continuous in space, the points closer to those

estimated receive higher weights than those that are farther

away (Cressie 1990).

In this study, spatial patterns of the SOM and nutrients

for the datasets at three scales were determined using

geostatistical analysis. Semivariograms were constructed

using GS+ version 7.0 (Geostatistics for the Environmental

Sciences) to examine the degree of spatial continuity of soil

properties among data points and to establish their range of

spatial dependency. Data that were not normally distributed

were logarithmly transformed in this study. Information

generated through semivariogram was used to calculate

sample-weighing factors for spatial interpolation by a kri-

ging procedure (Isaaks and Srivastava 1989) in the

Geostatistical Analysis extension in ArcGIS 9.0. Semi-

variance, c(h), is computed as half the average squared

difference between the components of data pairs (Wang

1999; Goovaerts 1999):

Fig. 2 The distribution

of sampling points at various

scales
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cðhÞ ¼ 1

2NðhÞ
XNðhÞ

i¼1

½ZðxiÞ � Zðxi þ hÞ�2: ð1Þ

Where N(h) is number of data pairs separated by a

distance h, and Z measured value for soil property, and x

position of soil samples.

Ordinary kriging was used for SOM and TN prediction

(Eq. 2), lognormal kriging for AP prediction (Eq. 3).

Ordinary kriging is:

Z�ðx0Þ ¼
Xn

i¼1

ki � ZðxiÞ ð2Þ

where Z(x0) prediction value, n number of samples, k
weight and Z(xi) measured value for soil property at x

position.

Lognormal kriging is:

Zskðx0Þ ¼ exp Yskðx0Þ þ r2
skðx0Þ=2

� �
: ð3Þ

Where Ysk(x0) is prediction value for the log-trans-

formed sample of x0 and rsk(x0) variance, Zsk(x0) back-

transformed prediction value.

Several standard models are available to fit the experi-

mental semivariogram, e.g., spherical, exponential,

Gaussian, linear and power models (Wang 1999). Selection

of semivariogram models was made based on the regres-

sion coefficient of determination (R2). In this study, the

fitted spherical model and exponential model were mostly

used.

Results and discussion

Descriptive statistics

Kolmogrov–Smirnov (K–S) test for goodness-of-fit was

performed to test the normality of the selected soil property

distributions. The SOM and TN at three scales were all

normally distributed. AP data were not normally distributed

and were further analyzed by using their logarithmically

transformed values (Fig. 3). Table 1 gives the summary

statistics of the datasets for SOM, TN and AP. The mean

values of SOM and TN exhibited highest in test plot area,

followed by Pinghu county and HJH plain. However, for

AP, its mean value (25.62 mg kg–1) in Pinghu was highest.

Mean AP exhibited lowest (12.49 mg kg–1) in HJH plain,

which is half of that in Pinghu. Pinghu county has always

been an area used for agricultural purpose, the content of

SOM and nitrogen in soil could decrease as a result of

intensive cultivation. For example, the average value

of SOM in black soils in Keshan county, Heilongjiang

province, decreased from 120 to 70 g kg–1 after 10 years of

cultivation, to 45 g kg–1 after 20–30 years, and to 37 g kg–1

after 50 years (General Soil Survey Office 1998). But it is

interesting that the content of the SOM and TN in paddy

field remains high. This is possible because the anaerobic

condition in a paddy field slows down organic matter

decomposition and the nitrogen mineralization rate.

Therefore, the content of SOM and TN in a paddy field

should be higher than that in dry land for similar climate,

geology, and fertilization. It is displayed in Table 1 that the

mean values of SOM and TN in Pinghu and the test plot area

are higher than that in HJH plain. Meanwhile, the mean AP

displayed in Table 1 suggested an excessive P applying in

Pinghu.

The coefficient of variation (CV) values of SOM, TN

and AP decreased with the increase in the scale of study

area, and their CV values showed highest in HJH plain and

lowest in the test plot area (Table 1). At the small scale of

test plot area, the soil management experience such as

cultivation and fertilization was uniform and the CV values

of soil properties were small. At moderate scale of Pinghu

county, different agricultural management practices be-

tween farmers may have resulted in the higher CV values

of soil properties. The highest CV values of SOM, TN and

AP at the large scale of HJH plain, as expected, are a result

of greatly variable soil management practices among dif-

ferent counties.

Geostatistical analysis results

The semivariograms for soil properties at three different

scales were shown in Fig. 4 and their attributes are sum-

marized in Table 2.

The Nug/Sill ratio (C0/C + C0) can be regarded as a

criterion to classify the spatial dependency of soil proper-

ties. A variable has strong spatial dependency if the ratio is

less than 25%, moderate spatial dependency if the Nug/Sill

is between 25 and 75%, and weak spatial dependency for

Nug/Sill is greater than 75% (Cambardella et al. 1994;

Chien et al. 1997). Additionally, spatial dependency was

defined as weak if the best-fit semivariogram model had an

R2 < 0.5 (Duffera et al. 2007). The spatial variability of

soil properties may be affected by both intrinsic (soil for-

mation factors, such as soil parent materials) and extrinsic

factors (soil management practices, such as fertilization).

Usually, strong spatial dependency of soil properties can be

attributed to intrinsic factors, and weak spatial dependency

can be attributed to extrinsic factors (Cambardella et al.

1994). It is shown in Table 2 that the soil properties were

best fitted by a spherical model or exponential model. Both

SOM and TN showed moderate spatial correlation at the

large scale of HJH plain and moderate scale of Pinghu

county, suggesting that the extrinsic factors such as fertil-
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ization, plowing and other soil management practices

weakened their spatial correlation after a long history of

cultivation. At the small scale of the test plot area, the R2

for the best-fit semivariograms of SOM and TN were all

lower than that at larger scale, which showed a weak

spatial dependency. Meanwhile, SOM and TN at moderate

Fig. 3 The histograms of

available phosphorus (AP) and

log-transformed AP at the large

scale of HJH plain (a), moderate

scale of Pinghu county (b) and

small scale of a test plot area (c)

Table 1 Descriptive statistical parameters of soil organic matter (SOM), total nitrogen (TN) and available phosphorus (AP)

Soil properties Scale Sample size Mean Minimum Maximum SD Kurtosis Skewness CV (%)

SOM (g kg–1) 1:250,000 460 34.04 10.92 61.40 9.16 –0.05 –0.19 26.91

1:50,000 131 35.34 17.37 62.18 8.12 –0.08 0.25 22.98

1:2,000 64 41.08 19.90 55.90 9.41 –0.81 –0.39 22.90

TN (g kg–1) 1:250,000 460 2.01 0.50 3.29 0.50 –0.16 –0.22 24.92

1:50,000 131 2.26 1.19 3.85 0.52 –0.13 0.41 23.09

1:2,000 64 2.62 1.23 3.47 0.56 –0.58 –0.54 21.49

AP (mg kg–1) 1:250,000 460 12.49 2.01 97.17 12.74 12.20 3.12 102.05

1:50,000 131 25.62 3.7 103.81 20.13 4.5 2.11 78.56

1:2,000 64 22.47 9.33 44.09 9.31 –0.45 0.65 41.46

Logarithm of AP 1:250,000 460 0.96 0.30 1.99 0.32 0.18 0.68 33.11

1:50,000 131 1.31 0.57 2.02 0.29 0.27 0.27 21.92

1:2,000 64 1.31 0.97 1.64 0.18 0.98 –0.02 0.14

SD standard deviation, CV coefficient of variation
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and large scale all had long spatial correlation range. The

spatial ranges of SOM in HJH plain and Pinghu county

were 33.6 and 10.68 km, respectively. For soil TN, its

spatial correlation distances at the moderate and large scale

were 36.4 and 16.21 km, respectively. This result indicates

a rational sampling distance for SOM and TN within their

spatial correlation ranges at the scale of Pinghu county and

the HJH plain.

Soil AP also showed a moderate spatial dependency at

the large scale of HJH plain with a Nug/Sill ratio of 49.1%.

Its effective range value was 59.7 km, which is much

longer than those of SOM and TN. However, at the scale of

Pinghu county and test plot area, the semivariograms for

soil AP did not show a scale of dependency, which indi-

cated that fertilization greatly affected soil AP and reduced

spatial dependency at the sampling intervals. This indicates

that more samples should be taken at smaller sampling

intervals in Pinghu and the test plot area to determine the

spatial dependency for heterogeneous data. Therefore, it

was reasonable to predict the spatial distribution of AP at

large scale of the HJH plain due to their high spatial

dependency. However, a more precise delineation of AP at

small scale requires additional sampling.

Spatial distribution

Figure 5 presents the spatial distributions of SOM, TN and

AP at three different scales of HJH plain (1:250,000),
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Fig. 4 The semivariograms of soil organic matter (SOM), total nitrogen (TN) and available phosphorus (AP) at the large scale of HJH plain (a),

moderate scale of Pinghu County (b) and the small scale of a test plot area (c)

Table 2 Best-fitted semivariogram models of soil organic matter (SOM), total nitrogen (TN) and available phosphorus (AP) at three different

scales

Soil properties Scale Model C0 C + C0 C0/C + C0 Range (m) R2

SOM (g kg–1) 1/250,000 Spherical 43.9 87.81 0.500 33,600 0.542

1/50,000 Exponential 35.4 70.81 0.500 10,680 0.679

1/2,000 Exponential 25.3 90.97 0.278 186 0.456

TN (g kg–1) 1/250,000 Spherical 0.117 0.262 0.462 36,400 0.803

1/50,000 Spherical 0.102 0.316 0.324 16,210 0.809

1/2,000 Exponential 0.086 0.319 0.270 165 0.394

AP (mg kg–1) 1/250,000 Exponential 0.054 0.11 0.491 59,700 0.927

1/50,000 Linear 0.079 0.086 0.918 – 0.029

1/2,000 Linear 0.031 0.033 0.943 – 0.031
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Pinghu county (1:50,000) and a test plot area (1:2,000)

generated from their semivariograms. The prediction maps

of SOM and TN were generated using ordinary Kriging

methods with original values of SOM, TN, and the log-

normal kriging on log-transformed values of AP because

lognormal kriging performs better than ordinary kriging,

multi-Gaussian kriging and indicator kriging when the data

were skewed (Saito and Goovaerts 2000).

Figure 5 showed that SOM and TN had similar trends

for high and low concentrations at three scales of study

area. As is known that the soil TN is highly correlated with

SOM, it is not surprising that they have similar spatial

distribution patterns. Their spatial patterns had substantial

geographical trends at three different scales. As shown in

Fig. 5, the contents of SOM and TN in Hangzhou, Haiyan,

southeast of Haining and Pinghu were low. This is as a

result of different soil parent materials of these areas.

These four counties are located on the coast of Hangzhou

Gulf, and the soils are coastal saline soil with light soil

texture. In Pinghu, the spatial patterns of SOM and TN

were quite consistent with that of HJH plain: high con-

centration mostly distributed in northwest and central

Pinghu and low concentration located in the southeast area.

The test plot area is in northern Pinghu, where the highest

SOM concentrations (>50 g kg–1) and TN concentrations

(>2.7 g kg–1) are distributed. Therefore, grouping soil

management could be recommended. That way, appropri-

ate fertilizer dosage could be recommended for the

Fig. 5 The spatial distribution maps of soil organic matter (SOM),

total nitrogen (TN) and available phosphorus (AP) (SOM and TN

produced by ordinary kriging, AP by log-normal kriging) at the large

scale of HJH plain (a), moderate scale of Pinghu County (b) and the

small scale of a test plot area (c)
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different groups with similar SOM or TN concentration

thus making soil management more proper.

Soil AP concentration is greatly affected by fertilization.

There were no significant geographical trends at moderate

scale of Pinghu county and small scale of test plot area.

However, the spatial patterns of AP in HJH plain showed a

geographical trend with high concentration mainly dis-

tributed in Pinghu and Hangzhou, due to the P overfertil-

ization in paddy field in Pinghu and the high P application

dosage to satisfy the vegetable growth in Hangzhou. The

result indicated that the soil AP variability at the large scale

of HJH plain is mainly a result of the variability between

different counties and so, grouping soil management is

possible with providing information for proper agricultural

management and macroscopic policy making. The vari-

ability at moderate and small scales, however, might result

from the difference between various soil management

strategies by farmers. Therefore, as to precise agricultural

management of AP, the study at small scale was more

valuable rather than at large scale because of the high

variations between farmlands.

Conclusions

The results of this study showed that the soil variability

increased with the increase in study scale in soil. The

variability of SOM, TN and AP were scale dependent at the

three different scales with an exception of AP, where

semivariograms showed no significant spatial structure at

the scale of Pinghu county and a test plot area.

SOM and TN showed moderate spatial dependency at

the moderate scale of Pinghu county and large scale of

HJH plain, because of the effect of intrinsic factors (soil

formation factors, such as soil parent materials, relief and

soil types) and extrinsic factors (soil management prac-

tices, such as fertilization). The large spatial correlation

ranges of SOM and TN are the results of differences in

parent materials and soil management between counties.

That the values of R2 between SOM and TN at small scale

suggests that other processes smeared the relationship

between SOM and TN. AP was moderately, spatially

dependent at large scale of HJH plain and however,

showed no spatial structure in Pinghu and the test plot

area.

The spatial patterns of SOM and TN were apparent,

especially at the scale of HJH plain and Pinghu county.

Distinct geographical trends could be seen from their

spatial distribution maps and the understanding such

structure may provide new insights into precise agriculture

by grouping soil management. The differences in soil AP

among counties in HJH plain were distinct in their spatial

distribution map and grouping soil management at large

scale and could give a hand to macroscopic policy making

for agriculture and resource managements, whereas the

spatial distribution of AP in Pinghu and test plot area had

no spatial continuity, owing to the different fertilization

practices between farmers. So fertilization recommenda-

tion should be based on farm unit for precise agricultural

management of soil AP at small scale.
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