
International Journal of Applied Earth Observation
and Geoinformation 4 (2003) 295–310

Detection of stress in tomatoes induced by late blight disease in
California, USA, using hyperspectral remote sensing

Minghua Zhang∗, Zhihao Qin, Xue Liu, Susan L. Ustin
Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA

Received 2 October 2002; accepted 14 April 2003

Abstract

Large-scale farming of agricultural crops requires on-time detection of diseases for pest management. Hyperspectral remote
sensing data taken from low-altitude flights usually have high spectral and spatial resolutions, which can be very useful in
detecting stress in green vegetation. In this study, we used late blight in tomatoes to illustrate the capability of applying
hyperspectral remote sensing to monitor crop disease in the field scale and to develop the methodologies for the purpose.
A series of field experiments was conducted to collect the canopy spectral reflectance of tomato plants in a diseased tomato
field in Salinas Valley of California. The disease severity varied from stage 1 (the light symptom), to stage 4 (the sever
damage). The economic damage of the crop caused by the disease is around the disease stage 3. An airborne visible infrared
imaging spectrometer (AVIRIS) image with 224 bands within the wavelength range of 0.4–2.5�m was acquired during
the growing season when the field data were collected. The spectral reflectance of the field samples indicated that the near
infrared (NIR) region, especially 0.7–1.3�m, was much more valuable than the visible range to detect crop disease. The
difference of spectral reflectance in visible range between health plants and the infected ones at stage 3 was only 1.19%, while
the difference in the NIR region was high, 10%. We developed an approach including the minimum noise fraction (MNF)
transformation, multi-dimensional visualization, pure pixels endmember selection and spectral angle mapping (SAM) to
process the hyperspectral image for identification of diseased tomato plants. The results of MNF transformation indicated that
the first 28 eigenimages contain useful information for classification of the pixels and the rest were mainly noise-dominated due
to their low eigenvalues that had few signals. Therefore, the 28 signal eigenimages were used to generate a multi-dimensional
visualization space for endmember spectra selection and SAM. Classification with the SAM technique of plants’ spectra
showed that the late blight diseased tomatoes at stage 3 or above could be separated from the healthy plants while the less
infected plants (at stage 1 or 2) were difficult to separate from the healthy plants. The results of the image analysis were
consistent with the field spectra. The mapped disease distribution at stage 3 or above from the image showed an accurate
conformation of late blight occurrence in the field. This result not only confirmed the capability of hyperspectral remote sensing
in detecting crop disease for precision disease management in the real world, but also demonstrated that the spectra-based
classification approach is an applicable method to crop disease identification.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

California accounts for∼75% of US total harvested
acreage and >86% of US tomato production (USDA,
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1997). Though climate in California is generally suit-
able for large-scale tomato farming, disease is still
one of the leading factors threatening sustainability of
tomato production. Pest management is usually one
of the main components in tomato production costs.
Each year California tomato farmers use 20–23 mil-
lion pounds of pesticide active ingredients, with an in-
tensity of 25–30 pounds per acre (CDPR, 2000). The
use of large amounts of pesticides not only causes po-
tential risks to the environment and ecosystem but also
increases the cost of farming. Large-scale tomato crop-
ping would benefit from a timely and location-specific
detection and monitoring system to reduce the cost
and risks associated with spraying pesticides. Detec-
tion of crop disease stress potentially represents one
of the most valuable applications of remote sensing
to agriculture (Haboudane et al., 2002; Boegh et al.,
2002).

With the rapid development of remote sensing
technology in recent decades, hyperspectral remote
sensors, such as airborne visible infrared imaging
spectrometer (AVIRIS), compact airborne spectro-
graphic imager (CASI), multispectral infrared and vis-
ible imaging spectrometer (MIVIS), and hyperspectral
mapping (HyMapTM) system, are now available to
agricultural applications. These sensors can provide
quality images with high spatial and spectral resolu-
tions required for precision agriculture (Taranik et al.,
1993; Fraser, 1998; Wilson and Felt, 1998; Bianchi
et al., 1999; Treitz and Howarth, 1999; Leblanc et al.,
1999; Nolin and Dozier, 2000). These high resolution
images also have great potential applications in en-
vironmental impact assessment (Barducci and Pippi,
1997; Bianchi et al., 1999; Goetz et al., 1985; Deguise
and Staenz, 1999; Holden and Ledrew, 1998). Be-
cause of the high spectral resolution with a narrow
band range of about 10 nm or finer, hyperspectral
remote sensing images produce a complete spectrum
for each pixel within the scene. These characteristics
combined with high signal-to-noise ratio enable us to
differentiate various vegetation stresses based upon
spectra of small patches of ground surface (Rush,
2002; Christ et al., 2000; Lelong et al., 1998).

When plants are stressed, such as by disease, their
absorption of incident light changes in the visible
range and in the NIR range (Carter and Knapp, 2001;
Adams et al., 1999; Dawson and Curran, 1998;
Lichtenthaler et al., 1996; Gitelson and Merzlyak,

1994; Guenther, 1990). This reaction is probably due
to the decreased chlorophyll content, changes in other
pigments, and foliar internal structure. The change of
absorption consequently influences the reflectance of
stressed plants. Therefore, in comparing the spectrum
difference of stressed and healthy plants, theoreti-
cally, we are able to identify the stress severity of
green vegetation. Many studies have examined the
relationship between chlorophyll content and spectral
reflectance in visible and NIR ranges (Carter et al.,
1996; Datt, 1998, 1999; Gitelson and Merzlyak, 1996,
1997; Gitelson et al., 1996; Knapp and Carter, 1998;
Blackburn and Steele, 1999). However, most of these
studies were based on leaf spectral reflectance and
very few were on canopy light response (Gitelson and
Merzlyak, 1996, 1998).

If a plant is infected, the physiological reaction
of a plant caused by disease will result in a change
of spectral reflectance due to the decreasing chloro-
phyll content and changing internal structure. Since
the chlorophyll content tends to decrease under dis-
ease stress, the incident solar radiation absorption of
the green plant generally results in a decrease in the
visible region. Consequently, the spectral reflectance
generally is higher in the visible green range de-
pending on the infection severity. The strong spectral
reflectance of green plants in the NIR range is mainly
due to its internal foliar structure. Plants under disease
stress also show various degrees of internal struc-
tural changes, which lead to a decrease of spectral
reflectance in the NIR range. These spectral features
of vegetation are the basis for remote sensing of
disease-stressed tomato plants.

Late blight, caused by the fungal pathogenPhy-
tophthora infestans, is a disease that spreads quickly
in tomato fields in suitable weather conditions during
growing season. The infection can threaten the sus-
tainability of tomato farming in California (Wisler and
Duffus, 2000; Clark et al., 1998). Humid air with high
temperature provides favorable weather conditions for
the outbreak of the disease. In addition to suitable
weather conditions, such factors as irrigation, cultivar
and farming system also contribute to the potential
risk of the disease in some tomato fields.

Farmers operating large-scale tomato fields required
timely and location-precise detecting and monitoring
of the infected plants for disease control to ensure their
harvest while reducing pollution risks from pesticides.
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Conventional ground scouting was not economic to
provide the efficient detection and monitoring in a
large tomato cropping area. Remote sensing, how-
ever, can provide a powerful technology to collect
crop canopy data that can be used to analyze the
geo-temporal and geo-spatial properties of the biolog-
ical features of the crop canopies, including the symp-
toms of late blight.

The objective of this study was to investigate, us-
ing tomatoes infected byP. infestansas an exam-
ple, the capability of hyperspectral remote sensing in
crop disease detection and to develop an approach
to explore this potential. The purpose was to dis-
tinguish the infected tomato plants from the healthy
ones in the AVIRIS image using an approach devel-
oped from the spectral analysis of the tomato canopy
spectra collected from the field. We combined the
minimum noise fraction (MNF) transformation with
multi-dimensional visualization, pure pixels endmem-
ber selection, and spectral angle mapping (SAM) to
classify the diseased pixels of tomato canopies from
the healthy ones in the AVIRIS image. The results
from the classification demonstrated the promising ap-
plication of hyperspectral remote sensing to detect
tomato disease when fast image processing is available
for proper and easily applied identification algorithms.

Fig. 1. Relief image of coastal California, showing the location of Salinas Valley.

2. Discrimination analysis using field canopy
spectra

2.1. Spectra data collection

The canopy spectra data of plants were collected in
four fields in Salinas Valley, California (Fig. 1) in the
late summer of 1998. The field’s size was approximate
40 acres and the tomatoes were at an early to mid-
dle fruiting stage. Due to the proximity of the Salinas
Valley to the Pacific Ocean, during the summer, the
weather is warm and the air relative humidity is high,
which are suitable for infection byP. infestansand
development of late blight disease. During the time
of spectra sampling, the tomato fields were identified,
by the field plant pathologist, Carla Thomas from the
Western Farm Service, as containing late blight dis-
eased plants with various severities. Probably due to
the effect of wind direction and moisture levels in the
field, the diseased areas often followed a pattern of
strips.

We used a spectrometer GER-2600 to measure the
spectral reflectance of the canopies at 1 m above the
canopy with a field of view (FOV) of 23◦. The wave-
length of the measurement was configured for the
range of 400–2500 nm. A total of 66 canopy spectra
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Fig. 2. Field spectral reflectance. Curve H: the average spectra of healthy plants. Curve 1: the average spectra of infected plants at stage
1 and curves 2, 3 and 4: at stages 2, 3 and 4, respectively. Curve S: the average spectra of the soil. The insert is an enlarged view of the
abrupt changes at approximate 1040 nm.

data were sampled at various disease infection severi-
ties in the field, 22 spectra of healthy plants, 11 spec-
tra of light diseased plants at stage 1, 12 spectra of
light diseased plants at stage 2, 17 spectra of diseased
plants at stage 3, and 4 spectra of diseased plants at
stage 4. We also sampled nine spectra of bare soils to
analyze the impact of soil background. Therefore, to-
gether with the soil, we had six groups of spectra for
the analysis. The statistical differences were assessed
by examining the standard deviations of spectra within
each group (Zhang et al., 2002). After that, the spec-
tral data were then calculated to obtain a mean spec-
trum for each group (Fig. 2). Table 1summarizes the
spectral characteristics of the six groups.

To relate the canopy spectra to infection severity, we
categorically defined the following five disease sever-
ity groups:

(1) healthy plants in which no symptoms were ob-
served on the leaves;

(2) infected plants at stage 1 (LB1) in which initial
symptoms were seen but only with one lesion on
one or two leaves;

(3) infected plants at stage 2 (LB2) in which symp-

toms were a little more severe than stage 1 (one
lesion on more than two leaves);

(4) infected plants at stage 3 (LB3) in which a mini-
mum of two lesions were on at least one leaf;

(5) infected plants at stage 4 (LB4) in which two le-
sions were on over half the canopy leaves.

2.2. Spectra analysis for discrimination

The spectral characteristics shown inFig. 2 pro-
vided a theoretical basis for the potential application
of remote sensing for the discrimination. The healthy
plants had a spectrum that is obviously different from
the diseased plants and soil background (Fig. 2). Four
sub-ranges were clearly identified for their spectral dif-
ferences. In the visible range, the soil had the highest
reflectance and the healthy plants the lowest. For dis-
eased plants, reflectance was between the reflectance
readings of soil and healthy plants. However, a spectral
difference between the healthy plants and the infected
ones was small in same ranges of the wavelengths.

Table 1indicates that, in the range of 400–700 nm,
average reflectance of healthy plants was 0.0338 and
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Table 1
Average field spectral reflectance of the tomato field

Ranges (nm) Healthy plants Diseased plants Soil

Stage 1 Stage 2 Stage 3 Stage 4

Spectral reflectance
400–700 0.0338 0.0352 0.0406 0.0457 0.0474 0.0791
700–1350 0.4159 0.4051 0.3921 0.3167 0.2790 0.1712
1350–1900 0.1224 0.1300 0.1508 0.1649 0.1720 0.2025
1900–2500 0.0686 0.0625 0.0784 0.0966 0.1124 0.1882
400–500 0.0229 0.0238 0.0257 0.0268 0.0278 0.0525
500–600 0.0456 0.0467 0.0527 0.0570 0.0588 0.0850
600–690 0.0314 0.0339 0.0416 0.0516 0.0544 0.0999
750–930 0.4826 0.4714 0.4466 0.3353 0.2879 0.1713
950–1030 0.4031 0.3842 0.3747 0.3332 0.2954 0.1773
1040–1130 0.4468 0.4427 0.4300 0.3926 0.3661 0.2005
1450–1850 0.0991 0.1049 0.1242 0.1414 0.1495 0.2020
2000–2400 0.0528 0.0540 0.0687 0.0911 0.1012 0.1860

Difference from healthy plants
400–700 −0.0014 −0.0068 −0.0119 −0.0136 −0.0453
700–1350 0.0108 0.0239 0.0992 0.1369 0.2448
1350–1900 −0.0077 −0.0284 −0.0426 −0.0497 −0.0801
1900–2500 0.0061a −0.0098 −0.0279 −0.0438 −0.1196
400–500 −0.0009 −0.0029 −0.0039 −0.0049 −0.0297
500–600 −0.0011 −0.0071 −0.0114 −0.0132 −0.0394
600–690 −0.0025 −0.0102 −0.0202 −0.0229 −0.0685
750–930 0.0111 0.0360 0.1473 0.1947 0.3113
950–1030 0.0189 0.0285 0.0700 0.1078 0.2258
1040–1130 0.0041a 0.0168a 0.0542 0.0807 0.2463
1450–1850 −0.0058 −0.0251 −0.0423 −0.0504 −0.1029
2000–2400 −0.0012a −0.0159 −0.0383 −0.0484 −0.1332

a The values are statistically insignificant at 0.05 level. Other values are all statistically significant at 0.01 level.

average reflectance of LB3 and LB4 plants were
0.0457 and 0.0474, respectively. Their standard devi-
ations were minimal in magnitude. Thus, the spectra
differences in the visible range between the healthy
plants and the most severe infected ones, LB3 and
LB4 was around 1.19 and 1.46%, respectively. The
spectra difference was even smaller for the LB1 and
LB2 plants (0.14 and 0.68%). The spectral difference
between the healthy plants and the soil was the high-
est, 4.53%, among all groups. Thus, except for soils,
the potential discrimination between healthy and dis-
eased plants was possible for the LB3 and LB4 plants,
but not for the LB1 and LB2 plants (Fig. 2).

The lower half ofTable 1provides more detailed
comparisons. In the red range (600–690 nm), a larger
difference of spectral reflectance was found for the
healthy plants and the plants at higher infection
stages. The maximum differences were 2.3 and 2%

for the LB4 and LB3 plants, respectively (Table 1).
This was consistent with the result ofCarter and
Knapp (2001)to loblolly pine. Due the statistical sig-
nificance, healthy and diseased LB3 and LB4 plants
can be separated in this red range, in addition to soils.

In the near infrared (NIR), healthy plants had the
highest spectral reflectance, while soils the lowest
(Fig. 2). On average, healthy plants had a reflectance
of 0.4159, while the LB3 and LB4 plants had a re-
flectance of 0.3167 and 0.2790 (Table 1). The spectral
differences between healthy and diseased LB3 and
LB4 plants were, 9.92 and 13.69%, respectively. The
spectral difference of healthy plants and soils was
24.48%. Therefore, this range of wavelength seems
more valuable than the visible range to detect crop
disease.

As shown inFig. 2, the reflectance of the tomato
plants reached the highest within two narrow ranges:
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750–930 and 1040–1130 nm. The spectra curves
showed a valley shape in the range of 950–1030 nm.
Table 1 showed that the range of 750–930 nm had
the greatest discrimination among the six groups.
In this range, the spectral difference of 19.47% was
found between healthy plants and the LB4 plants,
and the spectral difference of 31.13% was found
between healthy plants and soils. Even for the LB1
and LB2 plants, we observed a difference of 1.11
and 3.60%, respectively. This notable difference of
spectra demonstrated the importance of this range in
remote sensing of diseased tomatoes.

For the ranges of 950–1030 and 1040–1130 nm, a
more than 10%, 5–7% of spectral differences were
found for healthy plants and the LB4 and LB3 plants.
The spectral differences of healthy and the LB3,
and LB4 plants were found to be 4.85 and 7.33%
in the 700–750 nm range, and 7.03 and 10.91%
in the 950–1040 nm range, respectively (Table 1).
These ranges were also valuable for remote sens-
ing of the disease. Even at the ranges of 1450–1850
and 2000–2400 nm, the spectral differences between
healthy and disease LB3 and LB4 plants were suffi-
ciently large for the separations.

The above spectral analysis indicated that the range
of 750–930 nm was, statistically, the best wavelength
interval for remote sensing of the tomato disease, fol-
lowed by that of 950–1030 and 1040–1130 nm. The
spectral reflectance of the LB3 and LB4 plants was
significantly different from the healthy plants in these
ranges at significance level ofP = 0.01. Some narrow
ranges, such as 700–750 nm also have great potential
in the discrimination. The generally higher spectral
difference in the NIR range than in the visible range
demonstrates the importance of the infrared remote
sensing in monitoring of tomato disease for precision
agricultural practices.

3. Approaches to detect plant diseases
by AVIRIS imagery

Based on the above optical feature analysis of plants
with known disease severity, we used AVIRIS im-
ages of the field to identify diseased plants from the
healthy plants. The hyperspectral remote sensing im-
age was acquired at low flight altitude during Septem-
ber 1998. The spectra had 224 bands with a band span

of ∼10 nm from 400 to 2500 nm. However, due to in-
adequate quality of some bands in the original image,
we conducted a preliminary image process to elimi-
nate those low quality bands, which resulted in a hy-
perspectral image with 180 bands for the analysis. The
image had a spatial resolution of 4 m. The atmospheric
removal program ATREM developed by University of
Colorado (CSES, 1999) was used to calibrate the im-
age before analyses.

3.1. Minimum noise fraction (MNF) transformation

The MNF transformation proposed byGreen et al.
(1988)is an effective method to determine the inherent
dimensionality of image data and to segregate noise
(Boardman, 1993; Boardman and Kruse, 1994; Jia and
Richards, 1999). The MNF transformation provided
in the image-processing package ENVI, version 3.2
(ENVI, 1999) was essentially a two-cascaded principal
component transformation (PCT) procedure. The pro-
cedure assumed that each pixel contained both signal
and noise. This method, based on the signal-to-noise
ratio, allowed us to determine which bands were more
useful in the discrimination between the healthy and
diseased plants.

Thus, the first step in the MNF transformation
was to estimate the noise statistics from the data and
create a noise covariance matrix, which was used to
decrease correlation among the spectral bands and
rescales the noise in the data. Results from this first
step were the transformed data in which the noise
had unit variance and no band-to-band correlation.
The second step in PCT was a standard principal
component transformation of the noise-signal data.
Using each band as a variable and the pixels as
samples, the principal component transformation pro-
duced a number of eigenvectors (indicated by their
eigenvalues) and their corresponding eigenimages for
the image dataset. However, some eigenvectors were
more important than others as measured by eigenval-
ues. Eigenvectors with large eigenvalues constitute
the main principle components while the ones with
smaller eigenvalues are less important components.
The inherent dimensionality of the image data was de-
termined by examination of the results from the PCT
in two portions, in which the first was associated with
those eigenvectors with large eigenvalues and their
coherent eigenimages, and the second with near-unity
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eigenvalue and noise-dominated images. By using
only the portion with the coherent eigenimages, the
noise could be separated from the signal in the image
data, hence improving the processing results.

3.2. Classification of the image with signal bands

After removing the noise, classification could be
performed on the image with signal bands for the
separation. Given that we know the different spectral
patterns of healthy and diseased plants, supervised
classification is a logical choice to analyze the images.
Using the field spectra as the trained pattern, we were
able to obtain a direct connection of the classification
with field spectral measurements.

We selected the SAM technique to classify the im-
age. This SAM technique uses then-dimensional an-
gle to match the pixels to the reference (the identified)
spectra. It determines the similarity between the two
spectra by calculating the angle between them. SAM
treats the spectra as vectors in a space with dimension-
ality equal to the number of bands and compares the
angle between the reference spectrum vector and each
pixel vector in then-dimensional space, the formula
as follows:

SAM = a cos

( ∑
XY√∑

X2
∑

Y2

)
.

Smaller vector angle represents closer matches to the
reference spectrum, and hence can be grouped into
the cluster represented by the reference spectrum. Pix-
els further away than the specified maximum angle
threshold in radians are not classified.

3.3. Endmember spectra extraction and potential
pattern identification

SAM classification requires the reference spectra
as inputs to compare with the observed pixel spec-
tra to identify their similarity. Visualization analysis
is another method to identify the potential patterns in
the hyperspectral image and to extract the endmem-
ber spectra from the image, which can then serve as
the reference spectra for SAM classification. As in our
case, we first created a subset of the AVIRIS image
and select the field with known infected plant distri-
bution as a region of interest (ROI). Then we used

the signal bands to generate ann-dimension feature
space to visualize all the pixels within the ROI sub-
set image, wheren represented the number of signal
bands. All the pixels within the ROI were projected
into the space for analysis. Then we spun the visu-
alized feature space to observe change of the plot in
the space. Continually spinning the space, we were
able to identify potential patterns of the pixels in the
image.

Pure pixels or the pixels with typical spectral fea-
tures in the image could be identified with interac-
tive selection in the visualization space (Harsanyi and
Chang, 1994). The endmember spectra of the pure pix-
els could be obtained through computing their mean
digital number (DN) value in each band of the im-
age. Finally, we related these pure pixels with origi-
nal subset image and extracted image spectra of these
pure pixels from the 180-band image. This was a cru-
cial step when interpreting the results of endmember
spectra extraction because the signal-band MNF image
for the visualization only generated some endmember
spectra, and was not directly associated to health sta-
tus of tomato plants. To use the endmember spectra
for SAM classification, we first had to understand the
meaning of the endmember spectra before using them
in SAM classification.

To interpret the actual representation of these
extracted image endmember spectra in terms of in-
fection severity, we compared the extracted image
spectra with the obtained field spectra. First, we lo-
cated the disease locations of the field in the image
and determined their infection severities from field
data. We took 10 pixels for each infection stage and
extracted the pixel DN values from the image bands
to produce the image spectra. The average DN value
for the 10 pixels was used to represent the image
spectra of each infection stage. Then we scaled the
average DN values into the relative reflectance values
for the comparison, using the DN peak for the healthy
plants in NIR region as a reference basis. The peak
DN value of 4999 for healthy plants at 779 nm on the
image corresponds to the reflectance of 0.4639 in the
field spectra. The formula used was

MDNj =
∑

DNij

N
,

where MDN is the average DN of the 10 pixels for
bandj, DNij the DN of pixel i for bandj, N the total
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number of pixels(N = 10). The scale formula used
was

REFj = MDNj × max(REF)

max(MDN)
,

where REFj is the scaled reflectance for bandj,
MDNj the average DN forj, max(REF) the maximum
reflectance (i.e. max(REF) = 0.4639, REF for the
band with wavelength 779 nm), max(MDN) the max-
imum average DN (max(MDN) = 4999, i.e. MDN
for the band with wavelength 779 nm). After convert-
ing the DN values into reflectance, we calculated the
spectra differences between the image and the field
spectra data for the specific wavelength regions of
interest (the intervals inTable 1). By computing the
similarity matrix for each identified group, the SAM
classification was able to provide a preliminary view
of the capability of separating the identified groups
in the image. Rule images were the intermediate
classification result, indicating the similarity of each
pixel under the classification to the identified clusters.
Therefore, for each potential cluster, we had one rule
image. The pixel patterns with low correlation to each
other could represent the other cluster hidden in the
images that need to be highlighted.

3.4. Performance of SAM classification
on the subset image of the field

Taking the extracted endmember spectra from the
AVIRIS image as the reference, we performed the
SAM classification on the subset image to identify
the diseased plants. The above visualization analysis
provided a result of four endmember spectra repre-
senting four clusters. The MNF analysis indicated
that the first 28 bands are signal bands. Thus, we
aimed at the four clusters on the subset image with
28 bands in the SAM classification. Since our subset
image of the field also covered some parts of other
fields, we also took the spectra of these fields as refer-
ence clusters for classification. There were four fields
surrounding the tomato field but the north and the
south fields were actually with the same crop. Hence,
only three extra reference clusters were identified
for these surrounded fields. Therefore, together with
the four clusters in the tomato field, we had seven
groups for classifying the hyperspectral subset image.
The SAM analysis applied a pixel-based compar-

ison between each endmember spectrum and each
pixel spectrum in the image for the classification.
After trying several options, we found that the angle
threshold of 0.18 is the best choice for the classifi-
cation. This was because small angles of two vectors
meant to be similar for the pixels while large an-
gles of two vectors meant to be far apart. With this
threshold all image pixels could be properly classified
into the seven clusters with minimal misclassifica-
tion.

4. Image analyses

4.1. Spectral discrimination in the image space

Field tomato canopy spectra indicated that only cer-
tain ranges of the wavelengths were valuable for re-
mote sensing of crop disease. Among the 180 bands of
the original AVIRIS image, only 28 eigenvectors had
eigenvalues greater than 2 in MNF analysis (Fig. 3a).
We used the first 28 eigenimages derived from the
28 eigenvectors with eigenvalues greater than 2 for
further analysis and created this 28-band eigenimages
from the original AVIRIS image.

To perform the classification on the newly created
signal images, we needed to know the relationship
between each band and the spectral features of the in-
fected plants relative to the healthy ones. Associated
with the MNF analysis was a function to project the
field spectra of the tomato plants at various infection
severities into the same feature space as the MNF
eigenimage.Fig. 3billustrated the results for the first
28 important bands. Since the MNF transformation
was also a normalization process, the resulting MNF
reflectance fluctuated between positive and nega-
tive values to keep the feature of zero variance. The
classification of the field image with the 28 bands
could be done through the comparison of the spec-
tral similarity between the pixel and the projected
spectra from the obtained field spectral reflectance.
As shown inFig. 3b, the MNF reflectance for the
healthy plants (1.714) was very close to the LB1
plants (1.006). Mean MNF reflectance was 4.857 for
LB3 plants, 5.750 for LB4 plant, with a difference of
0.893. The difference of the mean MNF reflectance
was 3.143 between healthy and LB3 plants, and 4.750
between LB4 and LB1 plants. The largest difference
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Fig. 3. Results of MNF transformation: (a) MNF eigenvalues for the whole 180 bands; (b) MNF reflectance for the first 28 bands. Healthy
represents the healthy plants; LB1, LB3, and LB4 represent the infected plants at stages 1, 3 and 4, respectively; and Soils represents the
background soils.

of the mean MNF reflectance was 4.713 between
the healthy plants and soils. Moreover, the MNF re-
flectance of LB3 or LB4 plants was between the two
extremes of healthy plants and the soil for each band
(Fig. 3b). These spectral features were the same as
the features observed from the field spectra. Hence,
these features could be used as a basis for the im-
age classification of diseased and healthy plants of
tomatoes.

4.2. Visualization analysis

Fig. 3 showed the change of the four endmember
spectra in the range of 0.4–2.4�m. Since the ROI of
the subset image was a tomato field without bare soil,
we might interpret the endmember spectra as cate-
gories of the diseased plants at various severities. In
this way, the endmember 1 inFig. 3 could be charac-
terized as the healthy plants because it had the highest
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Fig. 4. Endmember spectra of the pure pixels representing each category of the classification, resulted from the visualization analysis of
the 28 signal bands. The labels are: 1, the first endmember; 2, the second endmember; 3, the third endmember; 4, the fourth endmember.

DN value in the NIR region (0.7–1.3�m) and the low-
est DN value in the visible region. In contrast, end-
member 4 might be referred to the severe diseased
plants because it had the lowest DN value in the NIR
region and the highest DN value in the visible region.
Since the LB4 was referred to most severe diseased
plants in the field, this endmember might represent
the characteristics of LB4 plants. Endmember 3 had
slightly higher DN value in the NIR region and a rela-
tively lower DN value in visible range than endmem-
ber 4, which was referred as LB3 (Fig. 4). Endmember
2 had a mean DN value between endmember 1 and
endmember 3 in the NIR region. Its relatively large
DN value difference from endmember 1 illustrated that
this endmember might represent the characteristics of
the LB2 plants.

4.3. Comparison of the image spectra with the
field spectra

As a number of factors, especially atmospheric and
the environmental factors (mainly soil in our case)
may affect remotely sensed data, the image spectra
extracted from hyperspectral remote sensing data was
usually different from the field collected spectra. Be-
cause the influencing factors can be minimized in the
field using handheld spectrometer, field spectra gen-

erally were much more pure than the image. Hence,
comparison of the image spectra with the field spec-
tra would help us better understand about their simi-
larity and difference in the identification capability of
the crop diseases.Fig. 5 illustrates the average image
spectra for the tomato plants with various diseased
stages and the soil. In spite of magnitude difference,
the shape of the image spectra was similar with that of
the endmember spectra (Fig. 4). Given that endmem-
ber spectra are mixed spectra, this was not surprising.

Though the general shape of the image spectra was
similar to the field spectra (Fig. 2) in the visible and
NIR regions, the apparent differences could still be
observed in the range of 1.4–2.5�m, where two main
domes, with one between 1.5 and 1.8�m and another
one between 2.05 and 2.3�m. These differences could
be mainly ascribed to the effects by the sensor charac-
teristics, the atmospheres, and the environmental fac-
tors. The complex atmospheric conditions were not
fully known, hence image calibration can only remove
the atmospheric effects to some extent. In addition,
remote sensor properties and the complicated surface
conditions also added the complexity into the remote
sensing imagery, which could also contribute to the
differences of the image spectra from the field ones.

In the visible region (0.4–0.7�m), the average re-
flectance of the image spectra was relatively higher
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Fig. 5. Image spectra of the field, illustrating the spectral difference of each category in the remote sensing imagery scale. The labels are:
H for healthy plants, 1 for LB1, 2 for LB2, 3 for LB3, 4 for LB4, and S for soil.

than that of the field spectra, while in the NIR re-
gion of 0.7–2.5�m, however, the reflectance was
generally lower in the image spectra (Table 2). This
was probably due to the different contributions of
atmospheric and environmental (mainly soil) effects
in these two spectral regions. Background soil had
higher reflectance in the visible region and much
lower reflectance in NIR region than the green crops.
The spectral reflection and absorption of the atmo-
sphere was also relatively higher in the visible region
than in the NIR region. Thus, in the visible region,
the effects of the atmosphere and the background soil
might eventually lead to an additive contribution to
the spectral reflectance in the image level, while in
the NIR region, these effects might lead to a subtrac-
tion to the reflectance in the image when compared
to the reflectance in the field.

The average reflectance differences of the healthy
and diseased plants were low in the range of
0.4–0.7�m (Table 2). The average reflectance of the
image spectra was apparently lower than that of the
field spectra in the region of 0.7–1.35�m. As shown
in Fig. 5, there were two deep valleys in this region,
while they were very shallow in the field spectra
as shown inFig. 2. Detailed comparison to the nar-
row ranges such as 0.4–0.5, 0.6–0.69, 0.75–0.93,

1.04–11.30 and 1.45–1.85�m demonstrated that the
separation capability was generally lower in the image
spectra than in the field spectra. Though the sensor
characteristics, atmosphere and the environmental
factors tended to attenuate the general difference of
spectral reflectance between the healthy and diseased
plants, the separation between them was still high in
the NIR region especially in the narrow peak region
such as 0.75–0.9 and 0.95–1.0�m. The relatively
high spectral differences in these narrow regions pro-
vided the capability of separation for the healthy and
diseased plants in the image scale.

4.4. Preliminary view to the relations in the rule
image spaces

Using the SAM technique, we generated four rule
images to represent the similarity between reference
spectrum and each pixel spectrum for a preliminary
view to their relations. If two rule images were highly
correlated, we could not separate the pixels. There-
fore, we should only highlight the rule images with
less correlation for their ability to represent the clus-
ter hidden in the images.Fig. 6aillustrated the linear
correlation between the healthy and LB2 plants. The
determination coefficient wasR2 = 0.9638, indicating
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Table 2
Average hyperspectral image reflectance of the tomato field

Ranges (nm) Healthy plants Diseased plants Soil

Stage 1 Stage 2 Stage 3 Stage 4

Spectral reflectance
400–700 0.0780 0.0786 0.0771 0.0814 0.0822 0.1030
700–1350 0.2465 0.2211 0.2120 0.2007 0.1922 0.1430
1350–1900 0.0367 0.0409 0.0407 0.0449 0.0455 0.0577
1900–2500 0.0144 0.0175 0.0174 0.0205 0.0218 0.0366
400–500 0.0667 0.0667 0.0662 0.0683 0.0689 0.0842
500–600 0.0847 0.0838 0.0818 0.0856 0.0862 0.1068
600–690 0.0710 0.0748 0.0731 0.0805 0.0819 0.1105
750–930 0.3785 0.3287 0.3087 0.2835 0.2700 0.1883
950–1030 0.2007 0.1847 0.1800 0.1737 0.1665 0.1256
1040–1130 0.2175 0.1950 0.1890 0.1792 0.1706 0.1177
1450–1850 0.0387 0.0432 0.0430 0.0475 0.0482 0.0613
2000–2400 0.0156 0.0189 0.0187 0.0220 0.0233 0.0390

Difference from healthy plants
400–700 −0.0007a 0.0009a −0.0034 −0.0042 −0.0250
700–1350 0.0254 0.0345 0.0458 0.0543 0.1035
1350–1900 −0.0042 −0.0040 −0.0083 −0.0089 −0.0211
1900–2500 −0.0031 −0.0030 −0.0061 −0.0073 −0.0222
400–500 0.0000a 0.0005 −0.0016 −0.0023 −0.0176
500–600 0.0009 0.0029 −0.0009a −0.0014a −0.0221
600–690 −0.0038 −0.0021 −0.0095 −0.0109 −0.0395
750–930 0.0498 0.0699 0.0950 0.1085 0.1902
950–1030 0.0159 0.0206 0.0269 0.0341 0.0751
1040–1130 0.0226 0.0285 0.0383 0.0469 0.0998
1450–1850 −0.0045 −0.0043 −0.0088 −0.0095 −0.0226
2000–2400 −0.0033 −0.0032 −0.0064 −0.0077 −0.0234

a The values are statistically insignificant at the 0.05 level. Other values are all statistically significant at the 0.01 level.

the mutual variation of the pixel’s similarity on the two
rule images. Similar correlation was also observed in
Fig. 6bshowing the pixel values of the rule image for
LB3 and LB4 plants. This indicated that the separation
between the healthy plants and the LB2 plants as well
as between the LB3 and LB4 plants was rather weak.
Fig. 6c and ddisplay the similarity of pixels in the rule
image spaces of the healthy and the LB3 plants as well
as LB4 plants. Since the pixels were scattered in the
two-dimensional space, there was no significant spec-
tral correlation between healthy and diseased plants at
LB3 and LB4 (r = 0.2483 and 0.1836, respectively
in Fig. 6c and d). Therefore, using hyperspectral im-
age analysis for late blight on tomatoes, we were able
to separate the healthy plants from the LB3 and LB4
plants although it is difficult to discriminate between
the LB3 and LB4 plants, and between healthy and LB2

plants. The results from preliminary view to the clas-
sification rule images confirmed our conclusion from
the field collected spectral analysis. Similar conclu-
sions were found from statistical analyses of the field
spectra (Zhang et al., 2002).

4.5. Identification of the disease in the
hyperspectral image

Given the above analysis, we focus the following
analysis with the hyperspectral image on identifica-
tion of the healthy and the LB3 and LB4 plants in the
field and kept the four clusters as references.Fig. 7a
presents the subset image for the classification and
Fig. 7b displays the results of clear identification of
the LB3 and LB4 plants from the healthy plants or
lightly diseased plants. The close spectral features
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Fig. 6. Similarity between the rule image for each of the categories of tomato plants, illustrating the correlation of the similarity between
rule images for (a) healthy plants and infected ones at stage 2, (b) infected plants at stages 3 and 4, (c) healthy plants and infected ones
at stage 3, and (d) healthy plants and the infected ones at stage 4.

between healthy and diseased LB2 plants (Fig. 6a), and
between diseased LB3 and LB4 plants (Fig. 6b) made
it difficult to separate them though some spectral dif-
ferences were observed in the NIR region 0.7–0.9�m.
Therefore, the image classification only allowed us to
clearly identify two categories of the tomato plants:
healthy or light diseased plants from diseased LB3

and LB4 plants.Fig. 7bshowed the areas with severe
infections, corresponding to the original image.

The image analysis also indicated that the southern
part of the field had more disease than the northern
part. This probably was due to weather-related topog-
raphy. After the first plant in the field was infected,
inoculum would be disseminated by the wind. The
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Fig. 7. Results of classification to the hyperspectral image for
identification of infected plants from the healthy ones. (a) The
pseudo color composite of the image, (b) the classified results
of the image for identification of the diseased plants. Note: H is
healthy plants; LB2, LB3, and LB4 are infected plants at stages
2, 3, and 4, respectively; and C1, C2 and C3 are other crops
respectively in the surrounding fields.

valley topography results in moist winds that usually
blow towards the southeast during the day and blow
backwards at night with much less intensity. Though
some infection could be seen in the eastern strip, it
was too faint for image analysis. However, the results
from aerial image analysis were consistent with the
field investigation. Therefore, we are confident that
the aerial hyperspectral images can be used to suc-
cessfully map the moderate-to-severe diseased plants,
and to distinguish them from healthy plants or lightly
diseased plants.

Economic loss of tomato production due to late
blight often occurs when infection reaches LB3 or
above. If farmers could map the disease at the field
level using hyperspectral images, they could use an
interpreted image as a guide to spray pesticide accord-
ingly to prevent the spread of the disease. This would
increase the effectiveness of disease control and de-
crease the possibility of fungicide contamination in
the environment.

5. Conclusion

Hyperspectral images have great potential in detect-
ing disease-stressed canopies and thereby allowing
precision disease management. This study developed
methodologies to detect diseased plants through a
spectra-based classification including MNF and SAM.
Field spectra analysis indicated that the most valuable
wavelengths were between 0.7 and 0.9�m for remote
sensing of the late blight on tomatoes. In the image
analysis, after MNF transformation, 28 bands were
identified as signal-dominant bands that were valuable
for separation of the healthy plants from the diseased
plants. High correlations between the healthy plants
and the lightly diseased LB1 and LB2 plants and
between the LB3 and LB4 plants were found, indicat-
ing difficulty in separating the categories. However,
healthy plants and lightly diseased plants were suc-
cessfully separated from the moderately and severely
diseased plants. Comparison of plants ranked for dis-
ease severity and image analysis also indicated that
pathogen-induced lesions could be visualized. A sta-
tistical test for significance indicated that both image
and field spectra showed consistent results with the
informative bands in late blight diseased tomatoes.
To conclude, we successfully demonstrated that hy-
perspectral remote sensing using bands mainly in
the range of 0.7–0.9�m was effective in detecting
tomatoes late blight disease. Although we believe
the methodologies developed in this study for image
analysis can be used to distinguish multiple disease
types, further research and field work are required.
However, under summer weather conditions in Cali-
fornia, late blight is the main disease of concern in
the tomato industry. This study will provide the in-
formation to tomato farmers and industry for direct
applications to late blight precision management. No
doubt, hyperspectral remote sensing could be used
to monitor disease on large-scale farms, and it would
become more common in the future, especially when
images are commercially available and appropriate
rapid image processing is possible.

Acknowledgements

The authors would like to acknowledge Profes-
sor Alfred Stein, Dr. G. van der Heỹcle, and the
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