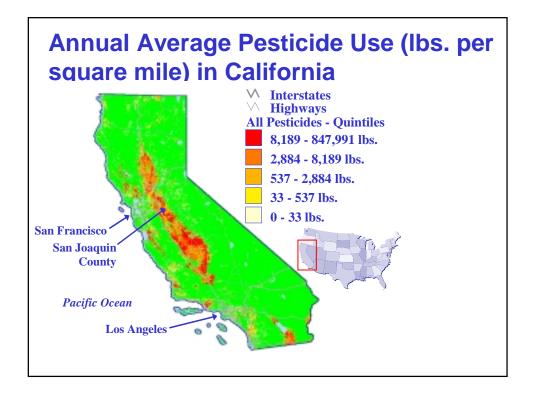


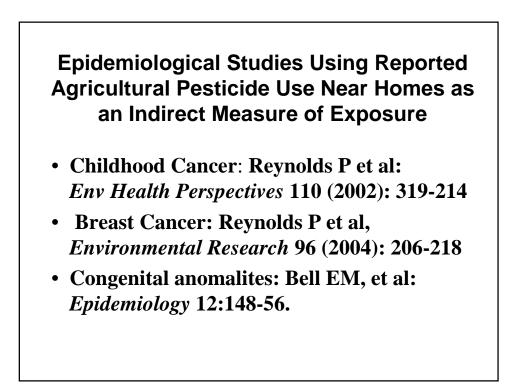
Agriculture in California

• California has large agricultural Valleys and a long growing season.

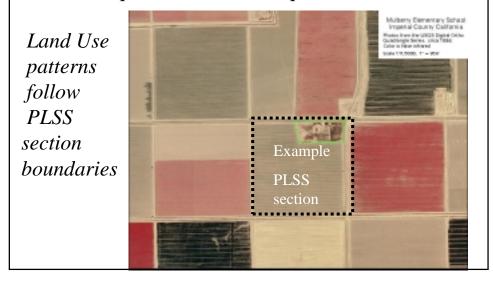
• 16% of United States agricultural pesticide use is applied in California.

• In 2002, 172 million pounds (78 million kilograms) of pesticide active ingredients were applied on California agricultural fields.

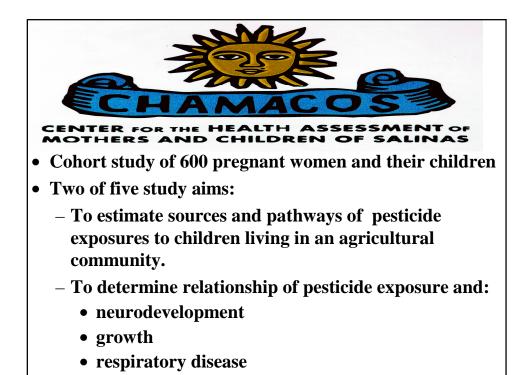

California Pesticide Use Reporting

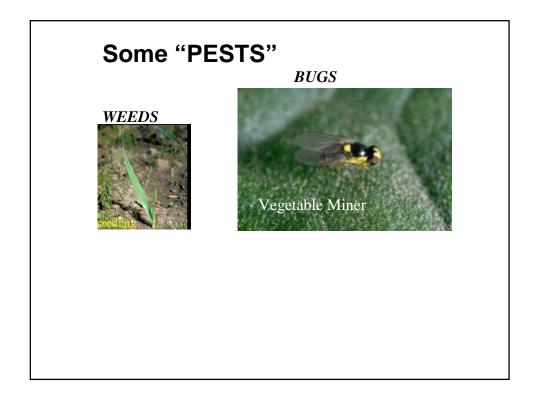

All **agricultural** pesticide use is legally required to be reported by growers to the CA Dept Pesticide Regulation. Database includes:

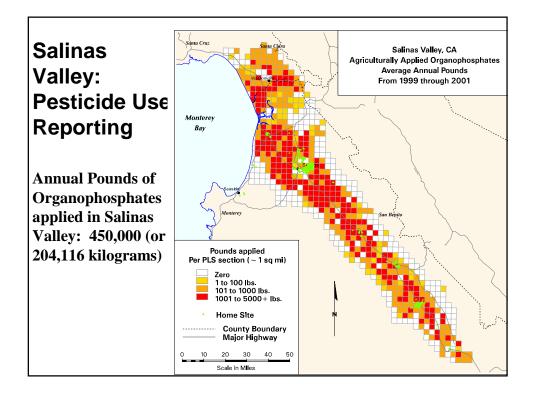
- **pounds** of active ingredient
- crop



 location of use: growers use a grid known as the Public Land Survey System (PLSS), units or "sections" of approximately 1 mile square area or 1.62 square kilometers


Location of Pesticide Use-- Public Land Survey System (PLSS): Units or "sections" of about 1.0 square mile or 1.62 square kilometers


Range of possible exposure that "nearness" to agricultural pesticide use or fields may suggest:


- exposures to air, groundwater, and household dust
- children playing in fields
- eating produce directly from field.
- carry home exposures from parents working

Characteristics of CHAMACOS Mothers (N=601)

- 92% Spanishspeaking
- 54% <u><</u> 5 years in U.S
- 44% 6th grade education
- 84% have agricultural workers in household

Снам	ACOS			Overview		
	Enrollment	26-Weeks	Delivery	6-Months	12-Months	24-Months
Questionnaire	✓	✓	✓	✓	✓	 ✓
Neurodevelopment & Growth Assessments			~	~	~	~
Home inspection/ Environmental samples: e.g., dust	~			~	~	~
Biological Specimens	Urine	Urine Blood	Urine Blood Cord Blood Breastmilk	Urine Breastmilk	Urine Blood	Urine Blood

Household Dust and Exposure

- Children have opportunity for direct exposure.
- Dust is a "sink" or reservoir for pesticides that adhere to soil particles.
- Little opportunity for environmental breakdown, i.e., little uv light.
- Residential soil and air measurements (other studies) are well correlated with household dust measurements

Dust Sampling Method

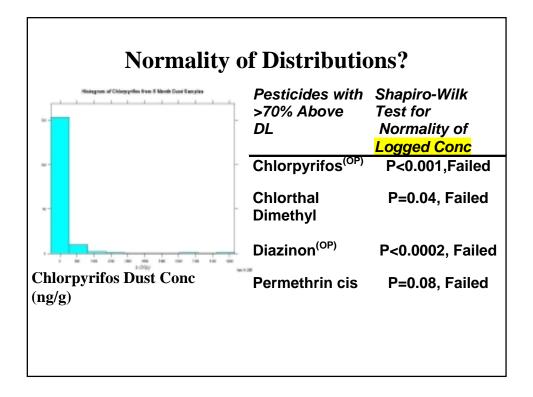
- Square meter in living area or living/kitchen area
- HSV sampling: deep dust.
- Home visit included a GPS reading of home location

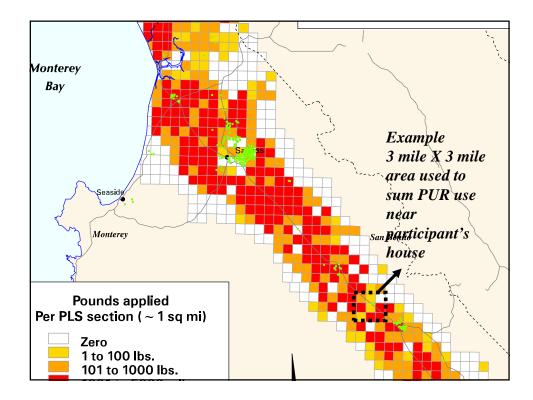
Selection of Dust Samples for Laboratory Analysis

- 170 homes randomly selected from 380 homes with home visits at all three home visits:
 - baseline
 - child 6 months of age.
 - child 12 months of age

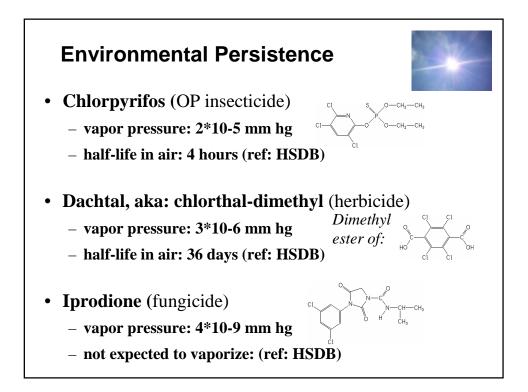
Dust Analyte Selection

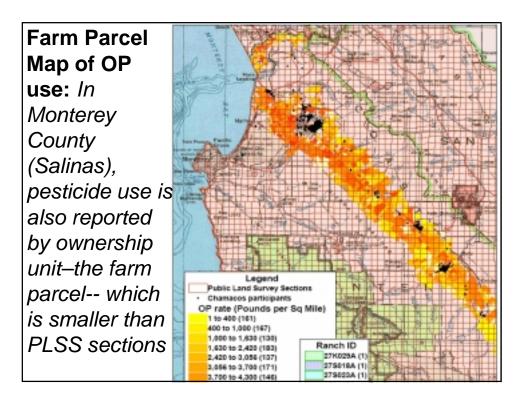
High Priority: Organophosphate pesticides (OP): 34% of worldwide insecticide market is organophosphates.

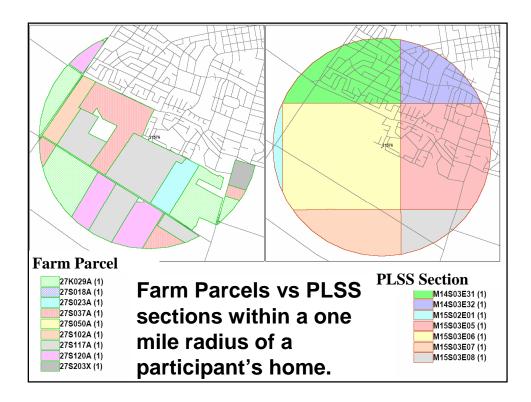

Potential Health Effects of Organophosphates:


neurotoxicity: mode of action is neuro transmitter inhibition

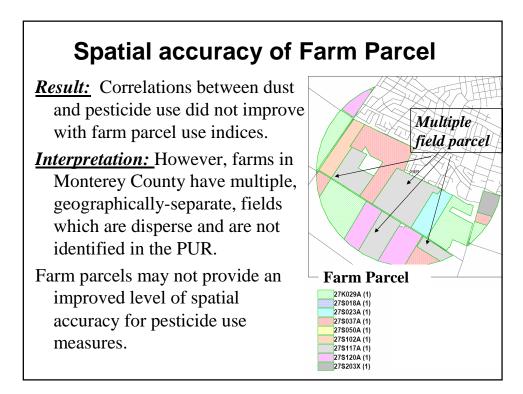
Reference: Eskenazi B, Bradman A, Castorina R. Exposure of children to organophosphate pesticides and their potential adverse health effects. *Env Health Perspect* 107 (suppl3):409-419 (1999).

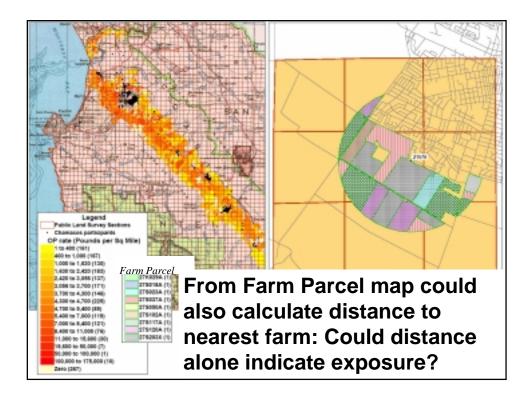

Analyte	agriculturally in Salinas Valley in 2001	
	valley III 200 i	jία
Diazinon ^(op)	133,537	
Malathion ^(op)	96,520	
Chlorthal-dimethy	/l 74,349	
Vethomyl	65,366	
Oxydemeton ^(op)	57,859	
Chlorpyrifos ^(op)	54,945	
prodione	45,700	
Bensulide ^(op)	32,669	
Permethrin	30,187	


	Range of QLs (ng/g)			
Analyte	QL for highest mass(.5 g)	QL for lowest mass(.01 g)	% of Samples Above QL	
Permethrins	2	50	<u> </u>	
Dacthal	2	20	93%	
Chlorpyrifos ^(OP)	2	20	86%	
Diazinon ^(OP)	1	20	87%	
Oxydemeton ^(OP)	1	50	67%	
Malathion ^(OP)	3	100	49%	
Iprodione	3	100	44%	
Methomyl	15	600	41%	
Bensulide ^(OP)	5	300	17%	
Methamidophos ^(OP)	1	50	9%	
Phosmet ^(OP)	3	100	5%	
Azinphosmethvl ^(OP)	100	2000	4%	
Fenamiphos ^(OP)	1	50	5%	



Pesticide Use near Home vs Dust Concentration Spearman Correlation Coefficients (N=168)						
						Days 1-14 is dust collection day plus the 13 days prior
Days 1-60 is dust collection day plus the 59 days prior						
	DAYS 1-14		DAYS 1-60			
	Pesticide Use: Median	Spearman Coefficient	Pesticide Use: Median	Spearman Coefficient		
	pounds/ 9 miles ²		pounds / 9 miles ²			
Permethrin cis	5.8	0.04	75	0.01		
<mark>Chlorthal</mark>	<mark>0.0</mark>	<mark>0.32***</mark>	<mark>64</mark>	<mark>0.49***</mark>		
Dimethyl						
Chlorpyrifos ^(OP)	8.4	0.07	83	0.10		
Diazinon ^(OP)	37	0.003	334	-0.07		
Oxydemeton (OP)	1.0	0.08	116	0.08		
Malathion ^(OP)	0.0	0.07	61	-0.02		
Iprodione	<mark>2.1</mark>	<mark>0.30***</mark>	135	0.33***		
Methomyl	22	-0.04	232	0.11		





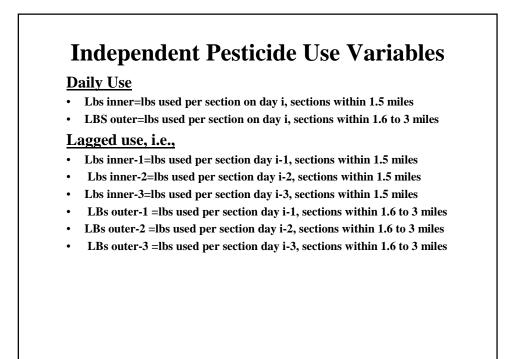
Correlations between House Dust Concentrations and two Pesticide Use Indices with different Geographical Reporting Units

	PLSS SI	ECTION	FARM	PARCEL
DUST Analyte (parent product)	Median Pest Use Days 1-60	Correlation Coefficient	Median Pest Use, Days 1-60	Correlation Coefficient
Chlorpyrifos (OP)	9.7	0.07	3.4	0.04
Chlorthal- Dimethyl	<mark>0.6</mark>	<mark>0.45***</mark>	<mark>0.4</mark>	<mark>0.39***</mark>
Diazinon (OP)	34.9	-0.03	11.0	-0.01
Iprodione	12.3	0.24**	1.3	-0.05
Oxydemeton Methyl (OP)	12.4	0.01	4.5	-0.01
Permethrin cis	4.5	0.00	1.3	0.05

DUST Analyte	Spearman Correlation Coefficient
Chlorpyrifos	07
Chlorthal dimethyl	<mark>33***</mark>
Diazinon	08
Iprodione	<mark>0.11</mark>
Oxydemeton Methyl	0.01
Permethrin cis	-0.04

Summary: Distance to Field

- <u>*Result*</u>: For one persistent analyte, chlorthaldimethyl, proximity to nearest farm was correlated with household dust measurements.
- <u>Conclusion</u>: For persistent compounds, distance to nearest agricultural field may be a useful indirect pesticide exposure measure and should be further explored.


Summary: Organophosphates

<u>*Result*</u>: For OPs, there was no correlation between house dust concentrations and either agricultural pesticide use or distance to agricultural field.

<u>Conclusion</u>: This is not consistent with other studies. Possible explanations include:

- Only 10% of homes (n=17) of homes in our study were < 200 feet from agricultural fields, the distance studied by others (Fenske R, et al Env Health Perspectives 110:549-553 (2002) . Our sample may have had too few homes close to fields to observe an impact.
- OPs have a very short environmental half-life. Agricultural pesticide use may not be impacting household dust levels.

Top Five Ranked Pesticides in Outdoor Air in Agricultural Areas of California						
Inhalation, Child, Noncancer Risks						
	Subchronic HQ	Chronic HQ				
$(50^{\text{th}} - 75^{\text{th}} - 95^{\text{th}}$ Percentile Estimates)						
MITC:	2.1 - 3.8 - 8.5 ^a	1.0 - 6.8 -118 ^a				
Methyl Bromide	e: 4.3 - 9.1 - 27	0.2 - 0.4 - 2.0 ^a				
Telone:	1.6 - 3.5 - 12 ^a	0.2 - 0.5 - 2.0 ^a				
Chlorpyrifos(O	P) 0.9 - 1.3 - 2.2	0.3 - 0.6 - 1.7				
Diazinon (OP)	0.2 - 0.4 - 0.9	0.02-0.05 - 0.1				
HQ = Hazard Quotient = intake (mg/kg/day) or ^a exposure (mg/m ³)) / corresponding health reference value						
Lee S, et al. Environmental Health Perspectives 110:1175-84 (2002)						

Conclusions

- For epidemiological studies where PUR is not available, distance to nearest agricultural field may be an indicator for pesticide exposure.
- When deciding what pesticides to study environmental persistence should be considered along with toxicity.

