

Do Pesticide Use Trends Determine the Potential for Biological Control?

Kent Daane, Christy Getz, Keith Warner, Lynn LeBeck, Nick Mills, Steve Welter, Bob Van Steenwyk

Dept. Environmental Science, Policy & Management, Center for Biological Control University of California Berkeley

Funding: California Department of Food & Agriculture Office of Pesticide Consultation & Analysis

Concept

Biological Control is one of the founding principles of Integrated Pest Management

Belief

If <u>more</u> *Biological Controls* are used than <u>less</u> *Insecticides* will be used

Question

Is there greater use of *Biological Controls*? If not, what <u>prevents</u> greater adoption?

Study

"Biological Control of Arthropod Pests in California Agriculture: Current Status and Future Potential."

Goals

- (1) Identify historical, current, and future role of bio-control for key commodities.
- (2) Identify barriers and opportunities for greater implementation of bio-control.

Three Parts to Study

Part I. Social & Political Economics

- (a) Bio-control use in light of current trends in <u>commodity policy & economics</u>.
- (b) **Bio-control practice, extension &** research as <u>conducted by institutions</u>.
- (c) Bio-control potential as a *commercial practice* (insectaries, PCAs, chemicals).

I. Economics: Almond Research

I. Economics: Citrus Research

I. Economics: Lettuce Research

I. Economics: Tomato Research

ALMOND Research Board Funding (1973 – 2005)

Funding (in \$100,000)

6

LETTUCE Research Board Funding (1980 – 2005)

I. Economics: Institutional Support

I. Economics: Institutional Support

Citrus industry threatened by Cottony Cushion scale **Citrus Experimental Station** Riverside, CA circa 1914

and citrus growers to Australia in 1988-89 (\$1,500). Project Vedalia beetle. C. Riley (USDA) sent A. Koebele (USDA) shows importance of joint efforts and institutional funding

I. Economics: Institutional Support

California Department of Food and Agriculture

United States Department of Agriculture

UC Riverside "Department of Entomology" "Bio-Control" Faculty (1950 – 2005)

Very Subjective Categorization – who decides what is BioControl or Who Qualities as 100% BC: Hired specifically for biocontrol research. Classical BC is program thrust.; PM: Faculty with applied BC output, but emphasis on IPM.; Basic: Faculty working on fundamental biological control issues. Long-term applications.

CDFA's "Biological Control Program" "Bio-Control" Faculty (1975 – 2005)

I. Economics: Initial Summary

California Department of Food and Agriculture

GOLDEN BEARS

Three Parts to Study

Part II. Bio-Control Theory & Practice

- (a) Description of past and current bio-control <u>and</u> IPM in key California crop systems
- (b) Verify <u>actual</u> practice and <u>effect</u> of biocontrol in commercial crop systems.
- (c) Determine what factors <u>limit</u> or <u>promote</u> bio-control in each crop system.

II. Bio-Control *Theory & Practice*

How often are bio-controls used? Is the advice correct?

II. Bio-Control Theory & Practice

(a) <u>*Catalog*</u> past and current efforts in <u>key crop systems</u>
(literature review) and then <u>verify their use and effectiveness</u>

Perennial	Annual	Other		
Pear / Apple	Broccoli	Alfalfa		
Almond	Lettuce	Glasshouse		
Citrus	Rice			
Grape	Tomato			
Stone Fruit	/ Insecticide u	se impact on bio-cont	trol	
Walnuts		-or-		
	Insect pests	Insect pests impact insecticide use		

Vine mealybug – an invasive species

Defoliation & "Raisining"

Dispersal Mechanisms

Rapid Spread as an Invasive Species

* Distribution changes rapidly because of new/unreported finds

Applications of chlorpyrifos (OP) will increase from 2000-2006Q1) What is the impact of invasive species on pesticide use?Q2) How does grape commodity & location impact pesticide use?

How have invasive species impacted Sustainable Viticulture? Are growers even using IPM and Sustainable practices?

Early leafhopper control programs relied solely on insecticides

chlorinated hydrocarbons organophosphates carbamates & organophosphates

Advertisement for UC Davis (1950s) Billboard for OP insecticide Resistance & 2nd pest outbreaks

There has been a steady increase in insect pests and a clear response in the development of more sustainable IPM programs

With each new insect pest, there is an initial increase in the use of "hard" insecticides, followed by scientifically-based development of better, more sustainable IPM programs

Insecticide replacement reduced pests, improved chances for bio-controls

Pounds (a.i.) / acre

Invasive Species, Grape Commodity and Region?

Cash Values, Cultural Practices & Pest Problems

Liquid Ant Bait vs. Chlorpyrifos for Ant Control

Argentine ant very strong impact on natural enemies

Formica perpilosa very strong impact on natural enemies and VMB location!

Gray ant & southern fire ant moderate impact

Cash Values, Cultural Practices & Pest Pressure

Developing Mating Disruption Programs

Invasive Species Impact California Grape Production

Key insect pests were moths:

Peach Twig Borer Oriental Fruit Moth (new SJV pest 1940s)

1970-90s – OPs & Carbamates (dormant OP & oil applications)

What sparked "sustainable" stone fruit IPM?

OFM and PTB sex pheromones were used to monitor flights. Major advance in in the 1980s with OFM mating disruption.

Bio-Control program for OFM. 1950s released millions of *"Macrocentrus ancylivorus"* Considered a failure – in fact, accounts for 40-70% parasitism of 3rd - 4th generation OFM.

OFM mating disruption removed the need for summer insecticides

PTB dormant spray (oil & OP) alternatives now sought.

Looked at bio-controls

What is the impact of N fertilization? Increase in moths!

What is the impact of N fertilization? Increase in moths!

PTB movement also led to use of bloomtime sprays with "Success" and "Bt"

Impact of removing dormant OP and in-season "broad-spectrum insecticides? – SJS outbreaks

San Jose scale problems return (SJS has LONG history in USA).

BioControl attempted repeatedly.

What replaced dormant OPs? New material applied better!

Walt Bentley tested dormant oil: 800 GPA (higher rate for better coverage) 8% Volck supreme oil (higher concentration) February treatment (better than December)

Monitor! Early-season sprays

Esteem (IGR)

Best method to conserve SJS parasites? Soft Insecticides!

SJS (---)

Good example of SJS biology & damage is harvest date

<u>Now that moths and SJS are controlled – What next?</u>

Three Parts to Study

Part III. Bio-Control Theory & Practice

- (a) Description of past and current bio-control and IPM in key California crop systems
- (b) Verify <u>actual</u> practice and <u>effect</u> of biocontrol in commercial crop systems.
- (c) What opportunities could be realized through policy interventions?